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1 Introduction

Some time ago, the study à la Belinski, Khalatnikov, Lifshitz (BKL) [1] of the chaotic

behaviour [2] of the general solution of the bosonic sector of 11-dimensional supergravity
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(SUGRA11) near a spacelike singularity revealed a hidden connection with the hyperbolic

Kac-Moody algebra E10 [3]. More precisely, it was found that, in the near-singularity

limit, most bosonic degrees of freedom “freeze” (i.e. have some finite limit), except for the

10 ‘diagonal’ components of the spatial metric (parametrized by their logarithms; βa ∼
− ln gaa) which undergo, at each spatial point, a chaotic billiard motion within a conical

polyhedron in an auxiliary 10-dimensional Lorentzian space, which can be identified with

the Weyl chamber of E10. Further work has shown that this E10-related billiard motion was

the lowest approximation (‘height 1’) of a hidden correspondence, which was checked up

to height 29, between the SUGRA11 dynamics and the dynamics of a massless particle on

the infinite dimensional coset space E10/K(E10) [4]. [Here, K(E10) denotes the maximal

compact subgroup of E10, see below.] More evidence for the presence of a hidden E10

symmetry in SUGRA11 came from the consideration of the fermionic sector of supergravity

which could also be put into correspondence (up to some approximation roughly equivalent

to the height 29 of the bosonic sector) with a fermionic extension of the E10/K(E10)

coset model [5–7]. For more work on the correspondences between gravity theories and

Lorentzian Kac-Moody algebras see [8–12]. For a recent review, see [13]. For other works

suggesting a hidden role of Lorentzian Kac-Moody algebras in supergravity or string theory,

see [14–17].

The aim of the present paper is to study the fermionic side of the billiard dynamics

taking place in the near-singularity limit. Instead of testing the conjectural gravity-coset

correspondence to higher levels of approximation, we shall here go back to the lowest level

of approximation (‘height 1’) and consider the Kac-Moody-related mathematical structure

behind the billiard dynamics of the SUGRA11-gravitino. We shall find that this structure

exhibits a remarkably simple interplay between E10 (hyperbolic) and K(E10) (elliptic)

aspects.

In this work, we shall study the fermionic side of cosmological billiards within the stan-

dard algebraic framework where the ‘classical’ supergravity dynamics makes mathematical

sense. Namely, we assume that the fermionic variables (ψ) take values in the odd-part of

a Grassmann algebra, while the bosonic variables (g,A) take values in the even part of

the same algebra. Then, with respect to the grading defined by a basis in the underlying

Grassmann algebra, one has ψ = ψ1 +ψ3 + . . . , while g = g0 + g2 + . . . , A = A0 +A2 + . . . .

The ‘body’ (g0, A0) then satisfies the Einstein-3-form equations without any ‘back-reaction’

of ψ (which only enters the ‘soul’ parts g2, A2, . . . ), while the lowest component ψ1 of ψ

follows a dynamics driven by g0 and A0. We are aware that [18, 19] have shown that, in

the case of an Einstein-Dirac system, the replacement of the O(ψ2) source terms for g2 by

classical VEV’s (of grading zero instead of two) strongly modifies the bosonic dynamics

(then taking entirely place at grading zero), and, in particular, destroys the chaotic nature

of the near-singularity limit. However, we do not think that such a replacement is math-

emetically or physically justified. Pending a truly quantum analysis (in Hilbert space) of

the back reaction of fermions, we think our analysis below is mathematically sound.

We shall also consider the truncation of this fermionic billiard to 4-dimensional N =

1 supergravity (SUGRA4). In this case, the relevant (hidden) hyperbolic Kac-Moody

symmetry is AE3 (or A++
1 , the hyperbolic extension of A1 ≃ sl2), and the relevant coset
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model involves AE3/K(AE3) [14]. In both cases (E10/K(E10) and AE3/K(AE3)), we shall

find that the ‘fermionic billiards’ exhibit a remarkable factorized structure involving both

Lorentzian (SO(9, 1) or SO(2, 1)) and Euclidean (SO(10) or SO(3)) structures. These

results may suggest new ways of thinking about the fermionic extension of the E10/K(E10)

coset model. Some of our results may also be of interest for mathematics as they involve

what we shall call “spin extensions of the Weyl groups” of hyperbolic Kac-Moody algebras.

2 Cosmological billiards and the conjectured gravity/coset correspon-

dence

In this section, we shall present a brief survey of the so-called “cosmological billiards” [14]

and describe some elements of the bosonic side of the gravity-coset correspondence. This

will allow us to fix the conventions and notations used in this article.

2.1 Maximal supergravity in the BKL-limit

We start with a short review of the billiard limit of the bosonic sector of D = 11 supergrav-

ity.1 In other words, we consider the behaviour of a general solution close to a spacelike

singularity in the leading BKL-like ‘gradient approximation’, where one keeps only time

derivatives and the dominant terms involving spatial gradients. We will adopt a space-time

slicing such that the singularity “occurs” on the coordinate time slice t = +∞. This slicing

is built by using pseudo-Gaussian coordinates defined by a vanishing shift leading to a

metric of the form

ds2 = −N2(t, x)dt2 +

10
∑

m,n=1

gmn(t, x)ξm(x)ξn(x). (2.1)

Here, ξm(x) =
∑10

i=1 ξ
m
i (x)dxi could be an arbitrary spatial frame. For simplicity, we

will use a coordinate frame ξm(x) = dxm. Note that, in order to avoid ambiguities in later

formulæ that involve repeated indices but no sum, we shall often dispense with the Einstein

summation convention and explicitly indicate the needed sums. Furthermore, we choose

the time coordinate2 t so that the lapse function is linked to the spatial volume density via

N(t, x) =
√

det gmn(t, x) (2.2)

and we adopt a generalized temporal gauge for the three-form potential, i.e. A0mn = 0.

Without loss of generality, we describe the independent degrees of freedom of the spatial

metric gmn by an Iwasawa decomposition of the associated vielbein eam (gmn =
∑10

a=1 e
a
me

a
n),

eam =: e−βaN a
m (2.3)

implying gmn =

10
∑

a=1

e−2βaN a
mN a

n. (2.4)

1See appendix A for our conventions in the Cremmer-Julia-Scherk action [20].
2The proper time T is related to t by dT = N(t, x)dt at each spatial point x [14].
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Here the N a
m’s are upper triangular matrices which have 1 as diagonal entries. The loga-

rithmic scale factors βa describing the ‘diagonal’ components of the metric (see eq. (2.4))

play a crucial role in the ‘near-spacelike-singularity limit’ (which corresponds to T → 0,

t → +∞ and
∑10

a=1 β
a → +∞, so that the local volume

√
det gmn = e−

P10
a=1 βa

collapses at

each spatial point). This limit shall also be referred to as the ‘BKL-limit’ in the following.

Let us first recall that the part of the supergravity Lagrangian that only depends on the

time derivatives β̇ := ∂β
∂t

of the scale factors β reads

L
β̇

=
10
∑

a=1

(

β̇a
)2

−
(

10
∑

a=1

β̇a
)2

=:
10
∑

a,b=1

Gabβ̇
aβ̇b. (2.5)

This defines a flat Lorentzian metric G in the d = D − 1 = 10 dimensional space of scale

factors βa with signature (− + · · ·+). This Lorentzian metric G plays a crucial role in

the gravity-Kac-Moody-coset correspondence.3 It will also be of prime importance for the

discussion of the gravitino in section 3. If the dynamics were completely described by the

Lagrangian L
β̇

(2.5), the scale factors β would follow a geodesic in the flat Lorentzian space

(R10, G) (or β-space):

βa = vat+ βa
0 . (2.6)

In addition, the leading β̇-terms in the Hamiltonian constraint impose the condition

0 =

10
∑

a,b=1

Gabv
avb (2.7)

which means that the geodesic (2.6) is a null geodesic.

The null geodesic (2.6), (2.7) is the β-space description of a Kasner solution. However,

such a Kasner-like solution is profoundly altered when one takes into account the additional

contributions to the Lagrangian (beyond (2.5)) coming from the off-diagonal components

N a
m (2.4) of the metric, the electric and magnetic energy of the three-form Amnp(t, x),

and from the spatial gradients of the metric. The detailed analysis in [14] shows, after

having changed to the Hamiltonian formalism, that all the other degrees of freedom of

supergravity result in adding to L
β̇

(2.5) several potential densities VA (labelled by an

index A) which have an exponential dependence upon the β’s:

VA = cAe
−2αA(β). (2.8)

Here, the coefficients cA depend on other degrees of freedom (N a
m, Amnp,. . . and their

conjugate momenta) and the αA(β) are linear functionals αA(β) =
∑10

a=1 αA, aβ
a. The

sum of (2.5) and (2.8) leads to a kind of Toda model for the dynamics of the β’s. In

the near-singularity limit
∑10

a=1 β
a → +∞, one can order the various potentials in terms

of their importance for altering the monotonic zeroth-order geodesic Kasner motion (2.6)

into a chaotic dynamics. There are 10 dominant Toda terms with exponents αi(β) with

3G is part of the deWitt supermetric.
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i = 0, . . . , 9 (see eq. (2.10) below), which all have positive coefficients ci. The ten terms

∝ e−2αi(β) conventionally define the ‘height 1’ in an approximation scheme where the higher

order terms are made of various products of the ten dominant terms (e.g. e−2α1e−2α2 =

e−2(α1+α2) is of ‘height 2’, e−2(α1+α2+α3) of ‘height 3’, etc.).

Nine of the dominant Toda terms come from terms (2.8) in the Hamiltonian where

the coefficients are quadratic in the conjugate momenta of N a
m (2.4). They are called

‘symmetry walls’. The choice of parametrizing the spacetime metric g by upper-triangular

matrices N (2.4) implies that the functionals αA corresponding to symmetry walls have

the form [14]

αs
(ab)(β) = βb − βa with a < b = 1, . . . , 10. (2.9)

Among the (10 × 9)/2 = 45 symmetry walls, the dominant ones are

αi := αs
(ii+1) = βi+1 − βi for i = 1, . . . , 9. (2.10a)

The tenth dominant Toda term comes from the potential (2.8) in the Hamiltonian which

arises from the ‘electric’ energy density of the 3-form Amnp(t, x). The antisymmetry of

Amnp implies that the corresponding ‘electric walls’ have the form

αel
abc(β) = βa + βb + βc

with a, b, c ∈ {1, . . . , 10} being all different. Among these, the dominant ‘electric wall’ is

α0(β) := αel
123(β) = β1 + β2 + β3. (2.10b)

All the other potential terms, which include the subdominant symmetry and electric walls,

the ‘magnetic walls’ αmag
a1...a6(β) = βa1 + · · · + βa6 , and the ‘gravitational walls’ α(g) (see

e.g. (2.18) below) can be written as linear combinations with positive integer coefficients

of the 10 dominant walls αi (2.10). It has been shown in [4, 8] that, up to height 29 in

an expansion in dominant walls, the SUGRA11-dynamics (for all the bosonic degrees of

freedom) following from the sum of (2.5) and all the other terms (2.8) can be identified

with the geodesic dynamics of a particle on the infinite-dimensional coset space E10/K(E10)

(which can be written as the sum of (2.5) and of an infinite number of potential terms (2.8)

where the linear forms αA(β) now label the positive roots of E10).

In the following, we shall focus on the ‘height 1’ approximation (which is common to

SUGRA11 and to the E10/K(E10) coset) that consists of keeping only the 10 dominant

Toda walls, i.e. of adding to (2.5) a potential term of the form (with ci > 0)

V1 =
9
∑

i=0

cie
−2αi(β). (2.11)

One can even further approximate the 10 Toda walls (2.11) in the BKL-limit
∑10

a=1 β
a →

+∞ by a sum of ‘sharp walls’

Vsharp =

9
∑

i=0

Θ[−2αi(β)], (2.12)

– 5 –
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where Θ[x] denotes an ‘infinite step function’ Θ[x] = 0 for x < 0 and Θ[x] = +∞ for

x > 0. The ‘sharp potential’ (2.12) has the effect of modifying the monotonic geodesic-

Kasner solution (2.6) of the free action (2.5) into a “zigzag” of straight line segments, of

the form (2.6), interrupted by ‘collisions’ with the 10 sharp dominant walls

αi(β) = 0 with i = 0, . . . , 9. (2.13)

Thus, the motion of the scale factors is restricted to the polywedge αi(β) ≥ 0 for i =

0, . . . , 9. In addition, the instantaneous ‘velocity’ va = β̇a (2.6) of the β-motion is still

constrained by the BKL-limit of the Hamiltonian constraint to satisfy eq. (2.7), i.e. to be

lightlike. The effect of each collision on a particular wall, say αi (2.13)4 is to transform the

incoming Kasner velocity v (2.6) into the outgoing one v′ = ri(v) by the usual formula for

a geometric reflection ri in the hyperplane (2.13) in β-space (R10, G) [7]:

ri(v) = v − 2αi(v)

(αi|αi)
α#

i . (2.14)

Here α#
i denotes the contravariant version of the covariant vector (or linear form) αi(β) =

∑10
[a=1 αi, aβ

a, i.e.

α# a
i :=

10
∑

b=1

Gabαi, b (2.15)

where Gab denotes the inverse of the basic β-space metric (2.5). The round brackets (·|·)
appearing in the denominator in eq. (2.14) denote the scalar product defined by the metric

Gab, or its inverse (depending on whether one considers covariant or contravariant vectors).

For instance, (αi|αj) =
∑10

a,b=1G
abαi ,aαj ,b, which is equal to (α#

i |α#
j ) =

∑10
a=1Gabα

# a
i α# b

j

as well as to αi(α
#
j ) =

∑10
a=1 αi ,aα

# a
j .5

From the scalar products between the dominant walls αi (2.10), one defines the fol-

lowing matrix:

Aij :=
2(αi|αj)

(αi|αi)
. (2.16)

It is found that this matrix is integer valued: with Aii = 2 and −Aij ∈ N when i 6= j. In

addition, for SUGRA11 (i.e. E10) as well as for SUGRA4 (i.e. AE3), all the dominant walls

have the same ‘squared length’ (αi|αi) = 2, so that Aij is symmetric. One can associate to

A a Dynkin diagram by drawing a node for the 10 dominant walls αi (2.10) and link them

by −Aij lines, which results in the Dynkin diagram of the hyperbolic Kac-Moody algebra

E10 [3] displayed on page 7. The matrix A (2.16) is the corresponding Cartan matrix [21]

of E10 for the present case of D = 11 supergravity. In addition, the restriction of the E10

invariant metric to the Cartan subalgebra coincides (when using suitable coordinates, also

denoted βa in the Cartan subalgebra) with the basic β-space metric Gab introduced in

eq. (2.5).

4All the dominant walls are found to be timelike, i.e. to have spacelike gradients [14].
5Note that the reflection (2.14) preserves the null constraint (2.6) on the velocities va.
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Figure 1. Dynkin diagram of E10.

Summarizing so far: the SUGRA11 billiard picture in β-space, arising as leading ap-

proximation in the sharp wall BKL-limit, can be identified with a ‘Kac-Moody billiard’ via

a dictionary that maps:

1. the ten gravity scale factors to coordinates βa in the Cartan subalgebra of E10

2. the ten SUGRA11 dominant walls αi to the ten simple roots of E10.

In other words, the billiard table, defined by the ten inequalities αi(β) ≥ 0 is identified

with the Weyl chamber of E10, and the bosonic billiard dynamics, comprising successive

reflections (2.14) in the dominant walls, is mapped into a product of Weyl reflections rik ,

i.e. an element w of the Weyl group WE10 of E10, say

w = ri1ri2 · · · rin · · · (2.17)

where the length of the Weyl ‘word’ w ∈ WE10 (describing the billiard dynamics towards

the singularity) grows indefinitely as t→ +∞. It is this aspect of the bosonic gravity-coset

correspondence that we will generalize to the fermionic sector in section 3.

2.2 Truncating SUGRA11 to SUGRA4, and correlatively reducing E10 to AE3

Before doing so, let us explain a result that we shall need below: how the inclusion of

N = 1 SUGRA4 within SUGRA11 corresponds to an embedding of AE3 within E10. Here,

we shall indicate how a sub-billiard of the (full) SUGRA11 billiard gives rise to the Cartan

matrix of AE3 in the BKL-limit.

To obtain N = 1 supergravity in D = 4 from SUGRA11, we have to perform two steps.

First, we reduce the theory down to 4 dimensions by compactifying on a flat seven torus T 7.

Second, we truncate the degrees of freedom of SUGRA11 down to those of N = 1 SUGRA4.

In other words, we discard the three-form and in our pseudo-Gaussian gauge (2.1), we can

restrict the indices m,n to the values 1, 2, 3 only. The β-space now becomes 3-dimensional,

and endowed with a ‘reduced’ Lorentzian metric Gr (of signature (− + +)) defined by

restricting the sums in eq. (2.5) to a, b = 1, 2, 3. Among the 9 symmetry walls (2.10a),

only two survive: α1 := αs
(12) and α2 := αs

(23). The previously tenth dominant wall (2.10b)

disappears due to the truncation of the 3-form. However, we must now take into account

the gravitational walls, which we could neglect above, because they were hidden ‘behind’

other walls (i.e. subdominant), but which now will affect the dynamics of the β-motion

near a singularity.

In D = 11 supergravity, the gravitational walls are given by [14]

αg
cde(β) = βc − βd − βe +

10
∑

a=1

βa (2.18)

– 7 –
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Figure 2. Dynkin diagram of AE3.

with c, d, e ∈ {1, . . . , 10} being all different. They are linked to the structure functions

Cc
de (dθc

Iwa = 1
2C

c
deθ

d
Iwa ∧ θe

Iwa) of the Iwasawa frame θc
Iwa := N c

mdx
m. The dimensional

reduction on T 7 to D = 3 + 1 dimensions with the gauge fixing of the metric as in (2.1)

implies that only the three spatial one forms θ1
Iwa, θ

2
Iwa, θ

3
Iwa have a non-trivial coordinate

dependence. Therefore, all structure functions Cc
de apart from the ones with c, d, e ∈

{1, 2, 3} are zero. This entails that only the gravitational walls (2.18) with these indices

are present, because the corresponding potential (2.8) vanishes for zero structure functions

Cc
de [14]. Among the surviving gravitational walls, one easily finds (making use of the

dominant symmetry walls αs
(12)(β) = β2 − β1 > 0 and αs

(23)(β) = β3 − β2 > 0) that the

dominant surviving gravitational wall is:6

α∗ := αg
123 = 2β1. (2.19)

Then following the prescription presented in the previous section, one computes the scalar

products between the three dominant walls αs
(12), α

s
(23), α

g
123, with respect to the inverse

of the reduced metric Gr, thus obtaining a 3× 3 matrix Aij . One finds that this matrix is

the Cartan matrix of AE3, whose Dynkin diagram is displayed in figure 2.

2.3 Kac-Moody coset model and the role of the connection Q
After having briefly reviewed how the BKL-limit of the bosonic sector of supergravity

gives rise to a billiard motion taking place in a Lorentzian polywedge, which can be iden-

tified with the Weyl chamber of a Kac-Moody algebra, let us review some of the elements

of the definition of the E10/K(E10) (respectively AE3/K(AE3)) coset model which has

been conjectured to capture the hidden E10 (resp. AE3) symmetry of SUGRA11 (resp.

SUGRA4). First, we recall that the relevant Kac-Moody algebra is inductively constructed

by its Chevalley-Serre presentation from the set of generators (ei, fi, hi) each corresponding

to a simple root or to a node in the Dynkin diagrams of E10 or AE3. The elements hi

span the Cartan subalgebra h ([hi, hj ] = 0). The basic Lie brackets among (ei, fi, hi) are

[hi, ej ] = Aijej , [hi, fj] = −Aijfj and [ei, fj] = δijhi together with Jacobi identities and

Serre relations [21]. The maximal compact subalgebra K(g) of an algebra g is defined as

the fixed point set of the Chevalley involution defined by ω(ei) = −fi, ω(fi) = −ei and

ω(hi) = −hi.
7 Hence, K(g) is spanned by the elements

Jα,s := Eα,s − E−α,s, (2.20)

6Note that this dominant surviving gravitational wall in D = 4 differs from the gravitational wall that

would dominate the other gravitational walls in a direct analysis of SUGRA11, namely α
(g)
1 9 10.

7Note that for g = gld, the automorphism −ω corresponds to the transposition in the standard matrix

representation of GL(d) and hence the corresponding subgroup K(G) = SO(d) indeed is the maximally

compact subgroup of the group G = GL(d) in the topological sense.
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where Eα,s is a general ‘raising operator’, i.e. a multiple commutator of the simple “raising

operators” ei, and E−α,s := −ω(Eα,s). Each general raising operator is labelled by: (1)

a positive root8 α ∈ ∆+ (i.e. [h,Eα,s] = α(h)Eα,s for h ∈ h) and (2) a degeneracy index

s = 1, . . . ,mult(α) labelling the different elements of g having the same root α. Due to

the similarity of the coset descriptions for hyperbolic Kac-Moody algebras, in particular

for E10 and AE3, we will for clarity focus on the former. It is straightforward to generalize

the construction to other algebras, which will also be addressed in appendix B.

Assuming the existence of an Iwasawa decomposition, we parametrize the coset V ∈
E10/K(E10) for the Lie algebra g = E10 by9

V = exp

(

10
∑

a=1

βa(t)Ha

)

exp





∑

α∈∆+

mult(α)
∑

s=1

να,s(t)Eα,s



 . (2.21)

Here Ha (a = 1, . . . , 10) is a general basis in the Cartan subalgebra h that was identified

with β-space and is hence endowed with the metric Gab (2.5) via (Ha|Hb) = Gab. The link

between the general basis Ha of h and the specific ten Cartan elements hi entering the

Serre-Chevalley presentation involves the simple roots αi (identified with the ten simple

walls (2.9), (2.10b) via hi =
∑10

a=1 α̌
a
iHa where

α̌a
i :=

2

(αi|αi)
α# a

i ≡ 2

(αi|αi)

10
∑

b=1

Gabαi b. (2.22)

Note that the ‘co-root’ α̌i ≡
∑10

a=1 α̌
a
iHa ≡ hi (which belongs to the Cartan subalgebra, i.e.

the dual of the root space to which αi belongs) enters both in the (Weyl) reflections (2.14)

in the hyperplanes defined by the roots, which can be written as

ri(v) = v − αi(v)α̌i,

and in the definition of the Cartan matrix (2.16) tantamount to

Aij = αj(hi) = αj(α̌i).

Let us also recall that a Kac-Moody algebra is called ‘simply laced’ if the Cartan ma-

trix Aij is symmetric. This implies that all the simple roots (and more generally all

the real roots) have the same length, which is conventionally normalized to (αi|αi) = 2.

In that case, which applies to the two specific Kac-Moody algebras E10 and AE3 that

we shall consider here, the co-root hi = α̌i becomes equal to the contravariant ver-

sion of the corresponding root α#
i (2.15) and the metric in Cartan space simply yields

(αi|αj) = (hi|hj) = (α̌i|α̌j) = αj(α̌i) = Aij . For simplicity, we shall assume in the main

text that we are in this simply-laced case. The general case of a non-symmetric Cartan

matrix will be discussed in appendix B.

8We recall that a root α is a linear form on Cartan space h and that a positive root α is a sum
P

i niαi

where ni ∈ N and αi is a simple root.
9We use the same symbol for groups and algebras. It should be clear from the context what is meant.
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The decomposition of the Lie algebra valued ‘Maurer-Cartan velocity’

V̇V−1 =: P + Q ∈ E10 (2.23)

into an “antisymmetric” part Q ∈ K(E10) and a “symmetric” one P ∈ E10⊖K(E10) allows

us to define the coset Lagrangian

L =
1

2n(t)
(P|P) . (2.24)

The bilinear form (·|·) entering the coset Lagrangian (2.24) is the (unique) E10-invariant

bilinear form [21]. In the simply-laced case, it is such that (Ha|Hb) = Gab, (hi|hj) = Aij

and (Eα,s|Eα′,s′) = δα+α′δss′ . See appendix B for the modifications that are necessary for

the non-simply laced case.

The bosonic coset equations of motion derived from the Lagrangian (2.24) read (in the

gauge n(t) = 1 that we shall henceforth use for simplicity)

∂tP(t) =
[

Q(t),P(t)
]

. (2.25)

In addition, the variation of the coset ‘lapse’ n(t) in (2.24) yields the constraint

0 ≈ (P|P) . (2.26)

In these equations, P ∈ E10⊖K(E10) represents the ‘velocity’ of the coset ‘particle’ moving

on the (infinite dimensional) coset space E10/K(E10). See [8] for the explicit proof that the

equations of motion (2.25) can be identified (up to height 29) with the equations of motion

of SUGRA11 via a ‘dictionary’ which relates the (first few rungs of the infinite ladder of)

coset variables (βa, να) to the bosonic gravity variables (βa,N a
m, Amnp, ∂[mAnpq], C

a
bc).

The fermionic extension of the coset model [5–7] has similarly shown that the bosonic

gravity-coset ‘dictionary’ could be extended (up to an approximation that corresponds to

the bosonic one) to a map relating the gravitino field ψ
(11)
M (t, x) of SUGRA11 to a coset

fermionic variable ψ(t) which belongs to the so-called ‘vector-spinor’ vs representation of

K(E10). Then, the fermionic coset equation of motion simply reads

∂tψ(t) = Qvs(t)ψ(t) (2.27)

where Qvs denotes the ‘vector-spinor’ representation of the object Q ∈ K(E10) that entered

the basic decomposition (2.23).

When comparing eq. (2.25) to (2.27), we see that the ‘antisymmetric’ part Q ∈
K(E10) of the Lie algebra valued velocity V̇V−1 ∈ E10 (2.23) plays the role of a K(E10)-

connection, realizing the ‘parallel transport’ of both the bosonic (coset-valued) ‘velocity’

P ∈ E10 ⊖ K(E10) and the fermionic coset variable ψ ∈ Svs
K(E10)

(where Svs
K(E10) denotes

the K(E10) ‘vector-spinor’ representation space). In more intuitive terms, we can think of

Q(t) ∈ K(E10) as being a continuous rotational angular velocity under which both P(t) and

ψ(t) ‘turn’ within their respective linear representation spaces of K(E10). The common

occurrence of the same Q(t) in the bosonic and fermionic dynamics will play a central role

in the present work.
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2.4 ‘Spiky’ structure of the K(E10) ‘angular velocity’ Q(t) in the near-singularity

limit

Having reviewed the crucial role of the K(E10) ‘angular velocity’ Q(t) in both the bosonic

and the fermionic equations of motion (2.25), (2.27), let us study the structure of Q(t) ∈
K(E10) in the BKL-type, near-singularity limit. In that limit, previous work on cosmolog-

ical billiards has shown that, as a function of the coset time t (which tends to +∞ rougly

proportionally to minus the logarithm of the proper time) Q(t) was exponentially small

most of the time, except around the time of a ‘collision’ with a dominant wall, when Q(t)

rose up to a finite value [11, 14]. To study the precise structure of these ‘spikes’ in Q(t),

it is enough to consider the ‘collision’ with a single wall. [Indeed, as t → +∞, the coset

time intervalls between wall collisions grow linearly in t. This ‘one-wall collision’ process

is anyway interesting in its own right (“S-brane solution”, see below).]

For simplicity, as this will be the case for the simply-laced algebras E10 and AE3 that

we focus on here, we consider a wall form α(β) where α is a real (positive) root α ∈ ∆+ with

norm (α|α) = 2.10 In this one-wall approximation, the Iwasawa form of the coset element

V (2.21) only contains one term, να(t)Eα, in the second exponent of (2.21).11 Then, one

can easily evaluate the ‘Maurer-Cartan velocity’ (2.23) by using the basic commutation

relation [h,Eα] = α(h)Eα involving any Cartan subalgebra element h ∈ h:

V̇V−1
∣

∣

∣

α
=

10
∑

a=1

β̇a(t)Ha + ν̇αe

10
P

a=1
βa(t)Ha

Eαe
−

10
P

a=1
βa(t)Ha

=
10
∑

a=1

β̇a(t)Ha + eα(β)ν̇αEα. (2.28)

Its splitting into a ‘symmetric’ part P ∈ E10 ⊖ K(E10) and an ‘antisymmetric’ one Q ∈
K(E10) as in (2.23)

P|α =
10
∑

a=1

β̇a(t)Ha +
1

2
eα(β)ν̇α

(

Eα + E−α

)

(2.29a)

Q|α =
1

2
eα(β)ν̇αJα, (2.29b)

where Jα = Eα − E−α ≡ Eα + ω(Eα) (2.20) allows one to evaluate the Lagrangian (2.24),

using the gauge n(t) = 1 for simplicity again:

L|α =
1

2

10
∑

a,b=1

Gabβ̇
aβ̇b +

1

4
e2α(β)ν̇2

α. (2.30)

Note that the normalization of the kinetic term of να has come from the normalization

(Eα|E−α) = 1 of the generators entering the K(E10) generator Jα. The ‘cyclicity’ of the

10Note that the final result of this section is not altered for the more general case that occurs e.g. for

Kac-Moody algebras with non-symmetric Cartan matrices, which is treated in appendix B in detail.
11Let us recall in passing that real roots are non-degenerate [21]. Hence, we can drop the degeneracy

index s in (2.21) without loss of generality.
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variable να implies that its conjugate momentum

Πα :=
∂L|α
∂ν̇α

=
1

2
e2α(β)ν̇α (2.31)

is constant. This conservation law will prove important for analyzing the time evolution

of the Cartan variables βa and of the K(E10)-connection Q (2.29b). The analysis of the

β-dynamics is greatly simplified by adapting the notation to the geometry. This is achieved

by decomposing β into a component parallel (βa
||) and a component orthogonal (βa

⊥) to the

considered wall α.

βa = βa
⊥ + βa

|| (2.32)

with βa
⊥ :=

α(β)

(α|α)
α#a

and 0 = α(β||) ≡ (α#|β||)

with α(β) =
∑10

a=1 αaβ
a and the metric (·|·) as used in (2.14). Note that this decomposition

uses the Lorentzian metric G (2.15). As the wall potential in (2.30) only depends on

the one-dimensional orthogonal component β⊥ ∝ α(β), it is easily seen that the motion

parallel to the wall proceeds with a constant velocity β̇a
|| as in (2.6). By contrast, the

motion orthogonal to the wall undergoes a non-trivial ‘Toda collision’. The corresponding

dynamics can be exactly solved by using the conservation of energy, which reads

E|| =
1

4
α(β̇)2 + e−2α(β)Π2

α, (2.33)

where E|| = −1
2

∑10
a,b=1Gabβ̇

a
||β̇

b
|| denotes minus the conserved parallel kinetic energy (which

must be positive in view of the null constraint (2.7) valid far from the wall). Note that the

normalization factor 1
4 in the kinetic term of α(β) (2.33) has made use of (α|α) = 2. The

conservation law (2.33) allows one to explicitly find the time evolution of the ‘orthogonal’

distance α(β). Besides the constants Πα and E||, it contains a time shift tc ∈ R as a

constant of integration:

eα(β) =
|Πα|
√

E||

cosh
(

2
√

E||(t− tc)
)

. (2.34)

Note that, when inserting the definition of Πα (2.31) and the result (2.34) into the expres-

sion of Q (2.29b), we obtain

Q(t)|α = e−α(β)ΠαJα = εα

√

E||

cosh(2
√

E||(t− tc))
Jα (2.35)

where εα = Πα

|Πα|
= ±1 is the sign of Πα. Equation (2.35) exhibits the precise structure

of the ‘spike’ of the ‘angular velocity’ Q ∈ K(E10), which occurs at each collision with a

Toda wall: it is centered at t = tc and given by an inverse hyperbolic cosine multiplying

the particular K(E10) generator Jα = Eα − E−α (2.20) associated to the considered root.
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It will be useful in the following to also consider the integrated effect of Q(t) through

the collision. For this, we define a finite ‘angle of rotation’ θ(t) about the fixed K(E10)

‘rotation axis’ Jα such that the instantaneous value of the ‘angular velocity’ Q(t) reads

Q(t)|α = θ̇(t)Jα. (2.36)

In other words, comparing with (2.35) we have

θ̇ := e−α(β)Πα = εα

√

E||

cosh(2
√

E||(t− tc))
. (2.37)

Integrating this differential equation yields the following expression for the time evolution

of the ‘angle of rotation’:

θ(t) = εα arctan
(

e2
√

E||(t−tc)
)

+ θ−∞ (2.38)

where θ−∞ = θ(−∞) ∈ R is another constant of integration.

We clearly see on (2.38) the nature of the K(E10)-‘rotation’ that takes place at each

wall: it consists of an arctan ‘kink’ (or ‘antikink’), localized around the central time tc of

the collision, and taking place on a finite time scale ∆t ≈ 1/
√

E||, during which most of

the rotation occurs. It is remarkable that the ‘total K(E10)-rotation’ linking the initial

state at t = −∞ to the final one12 at t = +∞ is universally given by

θtotεα
:= θ(∞) − θ(−∞) = εα

π

2
, (2.39)

and is essentially independent of the initial conditions and of the characteristics of the

considered wall. [We show in appendix B that, if one normalizes the generators Eα in a

standard Kac-Moody way [21], the result (2.39) is also independent of the norm of the root

α.] The only trace of the initial data is the sign εα of the momentum Πα conjugate to να.

In other words, the sign of Πα determines whether θ(t) undergoes a kink or an antikink.

We have checked that the universal result (2.38), that we have derived here from the

coset model, can also be obtained by using gravity variables directly. For instance, in the

case where the ‘collision’ occurs on an electric wall, we can derive (2.38) from the electric-

wall bounce solution written in [22] (using a “Freund-Rubin ansatz”), while in the case of

a symmetry wall, eq. (2.38) follows from the formulæ given in [14]. We have here another

example where the coset model provides a common basis for expressing, in a uniform way,

a priori unconnected special solutions of maximal supergravity that are sometimes referred

to as “S-brane solutions” [23].

2.5 Rederivation of the bosonic wall Weyl reflection from the connection ‘kink’

Summarizing so far: We have shown that the K(E10)-valued ‘angular velocity’ Q(t) which

entered (in different representations) both in the bosonic coset equation of motion (2.25)

12The limits t → ±∞ are to be physically interpreted as referring to the ‘billiard ball’ β being far away

from the considered wall α (incoming or outgoing), but also far away from the other dominant walls that it

encountered before, or will encounter later. In other words, the BKL-limit allows us to use a ‘dilute kink’

approximation.
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and in the fermionic one (2.27) was made of a sequence of well separated inverse-cosh

‘spikes’, proportional to the K(E10) generators Jα = Eα − E−α (2.20) associated to the

wall α on which the considered collision takes place. Before discussing, in the next section,

the effect of these spikes on the fermionic variables, let us see how their effect on the

bosonic variables reproduces the well-known BKL-type result (2.14) saying that the β-

space ‘velocity’ of the incoming billiard ball is Weyl-reflected in each wall.

To do this, we have to notice that, in view of eq. (2.25), the action of the K(E10)-

connection Q on the coset velocity P (2.23) is given by a commutator, i.e. by a (formal)

adjoint action.13 As the ‘rotation axis’ Jα is fixed, one can formally integrate the equation

of motion (2.25) in the one-wall approximation to obtain

P(t) = eθ(t)Jα · P(t0) · e−θ(t)Jα . (2.40)

We see here how, at any intermediate time, the effect of a collision with one wall α on P
can be understood as a continuous ‘rotation’ given by the adjoint action (within E10) of

the associated K(E10)-group element Rα(t):

P(t) = RAd
α (t)

(

P(t0)
)

(2.41)

with Rα(t) := eθ(t)Jα (2.42)

where the superscript Ad indicates the adjoint group action of Rα(t) ∈ K(E10) on the

coset element P and where the “rotation” Rα(t) about the axis Jα is obtained from a

formal exponentiation of the algebra element θ(t)Jα. One might worry whether the formal

exponentiation (2.41) is a well-defined procedure. It is in the present case, as we are going

to see. The basic reason is that, for a given real root α, the entire computation takes place

in an SL(2,R) subgroup.14

Let us evaluate the action of the total K(E10)-rotation linking the initial configuration

P(−∞) to the final one P(+∞):

P(∞) = RAd
α,εα

(

P(−∞)
)

(2.43)

with Rα,εα := eεα
π
2
Jα . (2.44)

In order to evaluate this ‘total rotation’ Rα,εα on P(−∞), one starts by noticing that, far

away from the wall (t → ±∞), the ν̇-terms in (2.29a) become negligible due to e−α(β) →
0 (2.31), (2.34), which leads to a simple expression for the initial datum

P|α(−∞) =
10
∑

a=1

vaHa, (2.45)

13Mathematically speaking, one should reserve the name ‘adjoint action’ to the adjoint action of K(E10)

on itself. Here, P belongs to a different representation space: the coset one E10 ⊖ K(E10). The action of

Q on P should therefore be called the ‘coset action’. Note, however, that this coset action is canonically

deduced from the adjoint E10-action, given the decomposition (2.23).
14Note that the adjoint representation is integrable and that hence any sl2-subalgebra generated by the

Chevalley triple (ei, fi, hi) for a simple root α = αi can be integrated to the corresponding group [21]. As

far as the action on the Cartan subalgebra h is concerned, this statement extends to any real root of E10,

which can also be considered as a simple root of a subalgebra.
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where va = β̇a (2.6) is the ‘incoming’ β-velocity. Hence, the initial coset ‘velocity’ (2.45)

belongs to the Cartan subalgebra. This drastically simplifies the calculation. The easiest

way to evaluate the action (2.43) is to work within the SL(2,R) subgroup generated by

the algebra elements Eα, E−α and [Eα, E−α] = hα ≡ α̌ ∈ h. As in equation (2.32), we

decompose the Cartan-subalgebra valued initial datum P(−∞) (2.45) into two parts P⊥

and P|| where α(P||) = 0. The component P|| is found to commute with Eα and E−α, while

the action of the SO(2) rotation Rα,εα (2.44) on P⊥ ∝ hα is obtained by exponentiating

Jα = Eα −E−α using [hα, Eα] = 2Eα. This is easily done by noting that the commutation

relations of hα, Eα and E−α are those of an sl2-subalgebra. In the canonical basis of

this subalgebra, we can represent Eα ≈
(0 1
0 0

)

, E−α ≈
(0 0
1 0

)

, hα = [Eα, E−α] ≈
(1 0
0 −1

)

so

that Jα = Eα − E−α ≈
(

0 1
−1 0

)

. Within this 3-dimensional representation of sl2, we can

exponentiate Jα ≈
( 0 1
−1 0

)

into eθJα = 1l2 cos θ + Jα sin θ, so that the adjoint action (2.43)

acting on the perpendicular component of P, P⊥ ∝ hα ≈
(1 0
0 −1

)

evaluates to

(1l2 cos θ + Jα sin θ)hα (1l2 cos θ − Jα sin θ)

=

(

cos2 θ − sin2 θ −2 sin θ cos θ

−2 sin θ cos θ − cos2 θ + sin2 θ

)

= cos(2θ)hα − sin(2θ)(Eα + E−α). (2.46)

We see that, while for intermediate angles of rotation, P⊥ is mapped out of the Cartan

subalgebra h and acquires a component ∝ sin(2θ)(Eα +E−α), the full rotation by θ = ±π
2

associated to a wall α transforms hα into −hα (i.e. back into h).

In conclusion, this ‘K(E10)
π
2 -rotation’-calculation says that P||(+∞) = +P||(−∞)

whereas P⊥(∞) = −P⊥(−∞), which is precisely a reflection in the α(β) = 0 hyperplane,

as generally expressed by the reflection formula (2.14). Thus, the equation (2.43) links the

‘incoming’ velocity va (2.45) for t→ −∞ to the ‘outgoing’ one v′a for t→ ∞:

v′ = rα(v) = v − α(v)α̌. (2.47)

Note also that the sign εα = ±1 of the π
2 -rotation has dropped from this bosonic calcula-

tion, essentially because the relevant variable P involve the doubled angle 2θ as we see in

eq. (2.46) (i.e. they live in the three-dimensional ‘spin 1’ representation of sl2 rather than

in the fundamental ‘spin 1
2 ’ one).

In order to keep the notation simple, we have confined the analysis to the simply-laced

case from the start by assuming (α|α) = 2. It is explicitly checked in appendix B that,

actually, the norm of the (real) root α drops out of the final result and always yields a

geometrical reflection (2.47) for the β-velocity. The fact that a general Weyl reflection of

a finite-dimensional group G can be expressed by a π
2 -adjoint rotation about the ‘axis’ Jα

in the compact subgroup K ⊂ G was recently noticed in [24], too. We also note that a

different exponential representation of a Weyl reflection (in the general Kac-Moody case)

is used in [21] (p. 36). Its relation to (2.44) will be discussed below.

In this section, we have shown explicitly that the Kac-Moody billiard associated to the

BKL-limit ofD = 11 supergravity can be understood as a sequence of 90◦-K(E10)-rotations

about the different axes Jαi
that are defined by the dominant walls αi (2.10), (2.20). Note
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that the ten ‘axes’ Jα are generators in K(E10) which are orthogonal to each other with

respect to the E10-metric (·|·). We will see in the next section that the same picture holds

for the fermions. Namely, the same formal rotation Rα,εα (2.44), now evaluated in the

spinor representation of K(E10) [5–7], acts on the fermions of supergravity, which can be

considered as the induced effect of the “collision of the scale factors βa with a wall α”.

This will lead us to introducing some ‘spin extension’ of the Weyl group.

3 Fermionic billiard of D = 11 supergravity and its K(E10) structure

3.1 Gravitino dynamics: gravity versus coset description

As a prelude to our study of fermionic billiards, let us recall the link between the standard

supergravity description of fermions and the coset one, which reveals its hidden K(E10)-

structure.

The gravity form of the fermionic equations of motion (neglecting non-linear fermionic

terms) derived from the Cremmer-Julia-Scherk action [20] reads (in the conventions recalled

in appendix A, using Einstein’s summation convention and flat indices A, . . . = 0, . . . , 10,

e.g. ∂A = EM
A

∂
∂xM .)

ΓB∇[Aψ
(11)
B] = − 1

144
ΓB
(

Γ[A
CDEF − 8δC

[AΓDEF
)

ψ
(11)
B] FCDEF . (3.1)

In this form, the coupling to the 3-form A (or rather F = dA) appears explicitly on the

r.h.s. , while the coupling to gravity is contained in the spin connection ωA[BC] appearing

on the l.h.s. of (3.1):

∇Aψ
(11)
B = ∂Aψ

(11)
B +

1

4
ωACDΓCDψ

(11)
B + ωAB

Cψ
(11)
C .

In the coset formulation, all the F -dependent terms on the r.h.s. can be merged with the

spin connection to form a K(E10)-connection Q = Q(0) +Q(1) +Q(2) +Q(3) + . . . where the

zero level term Q(0) involves the part of the spin connection which contains time derivatives

of the metric gmn(t, x) (2.1), while the level 1 term Q(1) involves time derivatives of the

three-form Amnp, the level 2 term Q(2) space derivatives of Amnp and the level 3 term Q(3)

space derivatives of the metric (in the form of the structure constants Ca
bc). To reveal this

structure, one needs to gauge-fix both the metric and the gravitino, and to work with some

redefined fermionic variables: namely the following ‘coset’ combinations of the original

D = 11 gravitino field ψ(11) and of the supersymmetry transformation parameter ǫ(11)

ψ0 := det(gmn)
1
4

(

ψ0
(11) − Γ0

10
∑

a=1

Γaψ
a
(11)

)

(3.2a)

ψa := det(gmn)
1
4ψa

(11) (3.2b)

ǫ := det(gmn)−
1
4 ǫ(11). (3.2c)

One fixes the supersymmetry gauge freedom by setting

ψ0 = 0. (3.3)
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Note that we are not exhibiting the 32-valued spinor index of neither the supersymmetry

parameter ǫ, nor the vector-spinor gravitino field ψa at this stage. As already mentioned

above, the gravitino equations of motion in the gauge (3.3) and up to ‘level 3’ in the

sense indicated above, were found to be expressible as a parallel transport of an element

of a ‘vector-spinor’ representation of K(E10) by the same connection Q(t) ∈ K(E10) that

entered the bosonic equation of motion (2.27):

∂tψ(t) = Qvs(t)ψ(t). (3.4)

Let us again emphasize the analogies between fermions and bosons. The time evolution of

the gravitino (3.4) is completely analogous to the bosonic one (2.25): at each moment, ψ

transforms by an infinitesimal K(E10)-‘rotation’ with the same ‘angular velocity’ Q(t) ∈
K(E[10) as for the bosonic case, except that now, Q is acting in a different representation.

The reader should keep in mind that the ‘fermionic’ representation of Q(t) will have,

modulo the fact that it lives in a different space, the same time-structure that we studied

in section 2.4, namely a sequence of well-separated inverse-cosh ‘spikes’.15

In the near-singularity limit, we need only to consider the ‘spikes’ associated to col-

lisions on the ten dominant walls αi (2.10) for i = 0, . . . , 9. We need now to recall the

definition of the vector-spinor representation vs of K(E10). It lives in a 320 dimensional

vector space and was defined in [5–7]. Here, it will be enough for our purpose to know

the action of the ten generators Jαi
(2.20) corresponding to the simple roots of E10. They

act on ψ in the vector-spinor representation vs as 320× 320-matrices. The explicit form of

these matrices follows from the results of [7] (see. eq. (2.26) there) or [6] and read

Jvs
α0

(ψ)a =
1

2
Γ123ψa + 4δa[1Γ2ψ3] − Γa[12ψ3] (3.5a)

Jvs
αi

(ψ)a =
1

2
ΓiΓi+1ψa + 2δa[iψi+1] for i = 1, . . . , 9. (3.5b)

Here, the Γa’s, a = 1, . . . , 10, are SO(10) real gamma matrices ({Γa,Γb} = δab). As a next

step, recall from section 2.4 that the effects of the walls on the dynamics are obtained by

considering, separately and successively, the effect of each ‘spike’ in the connection Q. We

then start by integrating eq. (3.4) over one spike of the form

Qvs(t) = θ̇Jvs
α = εα

√

E||

cosh(2
√

E||(t− tc))
Jvs

α .

The only difference with the previous case (2.35) is that Jvs
α now acts in a 320 dimensional

space, according to (3.5). As in the bosonic case (2.41), one can integrate the sequence of

infinitesimal K(E10)-rotations (3.4) with angular velocity θ̇Jvs
α into

ψ(t) = Rvs
α (t)ψ(t0) (3.6)

where Rvs
α (t) = eθ(t)Jvs

α .

15Note that the time-evolution of the K(E10)-algebra element Q(t) is unambiguously fixed by the bosonic

dynamics (2.25). Due to the different grading in the classical Grassmann algebra, any fermionic “backre-

action” of the fermions only affects higher orders in the Grassmann algebra.
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Finally, the total effect of the collision on a wall α will be an integrated K(E10) rotation

between the incoming gravitino ψ and the outgoing one ψ′, given by

ψ′ = Rvs
α,εα

ψ (3.7a)

with Rvs
α,εα

= eεα
π
2
Jvs

α . (3.7b)

Therefore, if we consider, as in eq. (2.17) above, the billiard dynamics towards a singularity,

its effect on the gravitino variable ψ will be represented by a growing ‘word’ made of

the product of the induced Weyl vector-spinor rotation (3.7) corresponding to the Weyl

reflections in the bosonic Weyl word w (2.17), i.e.

wvs = Rvs
αi1

,εαi1
Rvs

αi2
,εαi2

· · · Rvs
αin ,εαin

· · · (3.8)

At this stage, our task to describe the motion of the gravitino is reduced to exponentiating

the operators (3.5) within the 320 dimensional representation space.

For a further investigation of this action, we now introduce the following (second)

redefinition of fermionic variables

ϕa := Γ∗Γ
aψa (no sum) (3.9)

with Γ∗ := Γ1 · · ·Γ10.

The definition (3.9) would seem to drastically violate the SO(10) symmetry (the unbroken

subgroup of the space-time Lorentz symmetry SO(10, 1)) which was present in the general

action of the vector-spinor generators Jvs
α (see their general definition in [7]). However, we

shall see that this loss of explicit symmetry is compensated by the appearance of simple

structures linked to the SO(9, 1) Lorentzian metric Gab (the restriction of the invariant

form (·|·) to the Cartan subalgebra of E10) rather than to the SO(10) Euclidean metric δab

built in the zeroth level of K(E10).

3.2 Induced Weyl group action on the redefined gravitino

The usefulness of the redefinition (3.9) will appear in streamlining the structure of the

wall-induced ‘rotation’ Rvs
α,εα

(3.7) acting on the gravitino. Adapting the notation to the

geometry as for the β̇a reflection (2.32), we split the ‘vector’ index16 of the gravitino ϕa (3.9)

into components parallel and orthogonal to the wall α:

ϕa =: ϕa
⊥ + ϕa

|| (3.10)

with ϕa
⊥ =

α(ϕ)

(α|α)
α#a

and 0 = α(ϕ||)

where α(ϕ) is a short-hand notation for
∑10

a=1 αaϕ
a, modelled on the canonical pairing

α(β) that appeared in the bosonic case (2.32). A quick calculation then reveals that the

action of the generators Jαi
(3.5) drastically simplifies to

Jvs
αi
ϕa
|| = Js

αi
ϕa
|| (3.11a)

Jvs
αi
ϕa
⊥ = −3Js

αi
ϕa
⊥ (3.11b)

16In doing so, the hidden spinor index of ϕa is left untouched.
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where Js
αi

denote the Dirac spinor actions [19] (see also eq. (2.23) in [7]) defined by

Js
α0

=
1

2
Γ123 (3.12a)

Js
αi

=
1

2
ΓiΓi+1 for i = 1, . . . , 9. (3.12b)

It is convenient to summarize the structure of the Clifford algebra valued generators (3.12)

by writing them simply as

Js
αi

=
1

2
Γαi for i = 0, . . . , 9. (3.13)

where one introduces the short-hand notation

electric wall: α0 = β1 + β2 + β3 → Γα0 ≡ Γ1Γ2Γ3 (3.14a)

symmetry walls: αi = βi+1 − βi → Γαi ≡ ΓiΓi+1 (3.14b)

Note that these ten Γαi ’s all satisfy the relation

(Γαi)2 = −1l32 (3.15)

and therefore can be considered as imaginary units i (with i2 = −1). A remarkable fea-

ture of the result (3.11), (3.12), (3.15) besides their simplicity (compared to the original

form (3.5)), is the symmetry they reveal between a symmetry wall αi, i = 1, . . . , 9, and an

electric one, α0.

The simplicity of the structure (3.11), (3.12) now allows us to compute the needed

exponentiated action of εα
π
2J

vs
α , namely

Rvs
α,εα

= eεα
π
2
Jvs

α . (3.16)

Note that equations (3.11) mean that the parallel and the orthogonal parts ϕa
|| and ϕa

⊥ of

the gravitino ϕa are ‘eigendirections’ of the vector part of the vector-spinor generator Jvs
αi

.

More precisely, it is interesting to remark that, with the notation (3.13), the action of the

vector-spinor generators reads

Jvs
αi
ϕ|| =

1

2
Γαiϕ||,

Jvs
αi
ϕ⊥ = −3

2
Γαiϕ⊥,

thereby exhibiting the fact that the gravitino is a vector-spinor (spin 1 ⊗ spin 1
2) that

algebraically contains both a spin 1
2 and a spin 3

2 part. This eigencharacter, together with

the structure of the Dirac spinor action (3.13) implies that ϕ|| will rotate, under (3.16),

by exp(εα
π
4 Γα) (where α is any of the ten simple roots αi (3.14)) while ϕ⊥ will rotate

by exp(−εα 3π
4 Γα). Using the fact that each Γα (or εαΓα) can be thought of as being an

imaginary unit i (3.15), so that we can write exp(−3π
4 i) = − exp(π

4 i), we find that the

exponentiated action (3.16) boils down to

Rvs
α,εα

ϕ|| = Rs
α,εα

ϕ||,

Rvs
α,εα

ϕ⊥ = −Rs
α,εα

ϕ⊥.
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Now, we recognize in these formulæ the general definition of a geometric reflection in the

10-dimensional βa-vector space (which was identified with the Cartan subalgebra h): the

orthogonal component changes sign, whereas the parallel one remains unaltered. In other

words, if we recombine the two ‘eigenspaces’, we find that the exponentiated vector-spinor

rotation associated to any dominant wall α is simply given by

ϕ′a A =
10
∑

b=1

32
∑

B=1

[rα]a b

[

Rs
α,εα

]A
Bϕ

b B (3.17)

where [rα(ϕ)]a = ϕa − 2α(ϕ)

(α|α)
α#a

is a vector reflection (in β-space, i.e. h) in the hyperplane α(β) = 0, and where

Rs
α,εα

= eεα
π
2
Js

α = eεα
π
4
Γα

(3.18)

is a 32 × 32-matrix representing the K(E10) action on a Dirac spinor. To be clear, we

have made explicit all the indices on the redefined gravitino ϕ in eq. (3.17): the vector

indices a, b = 1, . . . , 10 (‘contravariant’ in βa space, i.e. living in h), and the (heretofore

suppressed) spinor indices A,B = 1, . . . , 32 (living in a real, Majorana representation of

the Clifford algebra associated to SO(10)).

The crucial point to note in eq. (3.17) is that the induced action on the fermionic

variable ϕ (3.9) of what was a (Weyl) vector reflection on the bosonic velocity v ∈ h is

the tensor product of a Dirac spinor action Rs
α,εα

(3.18) and a vector action rα (2.47). In

other words, the redefinition of the gravitino (3.9) revealed that the vector-spinor action

Rvs
α,εα

(3.5), (3.17) in fact factorizes into a Dirac spinor and a vector action. As is clear

from the explicit expression (3.17), this factorization implies that, when considering no

longer one isolated collision, but a succession of several of them, we can write, say for a

consecutive collision with two walls β, α:

Rvs
α,εα

Rvs
β,εβ

(ϕ) =
(

rα ◦ rβ
)

⊗
(

Rs
α,εα

Rs
β,εβ

)

(ϕ). (3.19)

Applying this factorization to the word representing the fermionic dynamics (3.8), we see

that the fermionic word wvs (3.8) similarly factorizes in the tensor product of the bosonic

Weyl word (2.17) with a corresponding word ws in the Dirac-spinor representation:

ws = Rs
αi1

,εαi1
Rs

αi2
,εαi2

· · · Rs
αin ,εαin

· · · . (3.20)

In the next section, we will show that the redefinition of the gravitino (3.9) also simplifies

the analysis of its degrees of freedom, before investigating the Dirac spinor action Rs
α,εα

in

more detail in section 3.5.

3.3 Supersymmetry constraint as a tranversality constraint on a ‘polarized’

billiard particle

A further instance of the simplifications brought by the redefinition of the gravitino (3.9)

occurs when considering the “supersymmetry constraint” S ≈ 0 [7]. This is a constraint
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on the initial data for the gravitino, which originates from the equation of motion of

the gravitino component ψ0. Its explicit expression has been written down in equation

(5.14) in [7]. The first observation is that it considerably simplifies in the BKL-limit when

considered away from any wall. This is due to the fact that the higher level contributions

P
(1)
a1a2a3 , P

(2)
a1...a6 , . . . as well as the off-diagonal components of P

(0)
ab become exponentially

negligible far away from the wall (i.e. they are proportional to positive powers of e−α(β)

that vanishes in the BKL limit
∑10

a=1 β
a → +∞ (2.34)). Thus, after a rescaling, we are

left with a simplified supersymmetry constraint SBKL ≈ 0, with

SBKL =

10
∑

a=1

(

β̇a −
10
∑

c=1

β̇c

)

Γ∗Γ
aψa. (3.21)

If we now replace the original (coset) fermionic variables ψa in terms of the redefined

gravitino ϕa (3.9), we find that SBKL acquires a remarkably simple form:

SBKL =
10
∑

a,b=1

Gabβ̇
aϕb. (3.22)

Note that, contrary to the original form (3.21), this form is now factorized in the sense

that the hidden spinor index on ϕb is left untouched. The constraint SBKL now affects

only the vector index of ϕa. More precisely, we see that the constraint SBKL ≈ 0 says that

the contravariant billiard velocity va = β̇a (2.6) is orthogonal (with respect to the β-space

metric G (2.5)) to the ‘contravariant vector’ ϕa (3.9). The latter could be thought of as a

‘polarization direction’ orthogonal to the lightlike velocity va (2.7) of the ‘billiard particle’

(as if we were talking about a Maxwell-like vector of helicity ∝ ϕa).

Note the remarkable fact that the (K(E10)-related) Euclidean SO(10) structure of the

original, exact supersymmetry constraint (exhibited in eq. (5.14) in [7]) has given rise to

a constraint which formally looks SO(9, 1) invariant, in the sense that it now involves the

(E10 related) Lorentzian structure Gab (2.5). [One should however keep in mind that the

hidden, factorized spinor index on ϕ maintains its SO(10)-related nature.]

Furthermore, notice that the constraint S transforms as a Dirac spinor under a collision

with a wall α:

S ′
BKL = Rs

α,εα
SBKL. (3.23)

This follows from combining the transformation properties of va (2.47) and of ϕa (3.17)

and it proves in particular that the constraint SBKL ≈ 0 is preserved under the evolution

in the BKL-limit.

Note finally how the billiard limit has analagously simplified the Hamiltonian con-

straint (2.7) and the supersymmetry constraint (3.22). They now seem to unite in express-

ing the ‘gauge invariance’ (in β-space) of an effective Maxwell-like particle: the billiard

limit of the Hamiltonian constraint expresses the massless nature of this β-space ‘pho-

ton’, while the billiard limit of the supersymmetry constraint expresses the transversality

constraint ηµνpµAν = 0 linked to the Maxwell gauge invariance. As both constraints orig-

inally followed from other gauge invariances (diffeomorphisms and local supersymmetry),
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this intriguing transformation of gauge constraints in the billiard limit may be the tip of

the iceberg of an improved understanding of the symmetries of supergravity, and of their

possible E10/K(E10) coset reformulation.

3.4 Conserved bilinear form and ‘gauge transformations’

It was found in [5–7] that there existed a symmetric,17 bilinear form (·|·)vs on the 320-

dimensional vector-spinor representation space which was K(E10)-invariant, and therefore

invariant under the exact, coset fermionic equations of motion (3.4). This bilinear form was,

in particular, invariant under the SO(10) subgroup of K(E10) corresponding to SO(10)

rotations of the vector index a of ψa. Indeed, its original expression in terms of two gravitini

ψ1, ψ2 was [7]:

(ψ1|ψ2)vs := −
10
∑

a,b=1

ψa
1

T Γabψ
b
2. (3.24)

Let us see how this form is transformed when substituting ψa by its expression in terms of

the redefined gravitino ϕa := Γ∗Γ
aψa (3.9). An easy calculation (using Γab = ΓaΓb − δab)

yields

(ϕ1|ϕ2)vs =

10
∑

a,b=1

Gabϕ
a
1
Tϕb

2 =

10
∑

a,b=1

32
∑

A=1

Gabϕ
a A
1 ϕb A

2 . (3.25)

Note again how the use of the ϕa variables has revealed a hidden ‘Lorentzian’ structure in

the form (·|·)vs. More precisely, the K(E10)-covariant bilinear form (3.24) of two gravitini

ϕa
1 and ϕb

2 amounts to contracting their 32-valued Dirac-spinor indices in the standard

Euclidean way, whereas their vector indices are contracted with the Lorentzian metric Gab

that was defined on the space of scale factors β (2.5). Let us also consider the corresponding

norm (when evaluated on real, commuting variables)

Qvs(ϕ) := (ϕ|ϕ)vs =

10
∑

a,b=1

Gabϕ
aTϕb. (3.26)

On the full ϕ-space, this norm has a hyper-Lorentzian signature with 9× 32 pluses and 32

minuses. However, we note that, when the supersymmetry constraint SBKL = 0 is satisfied,

the norm Qvs(ϕ) becomes positive semi-definite. Indeed the supersymmetry constraint S
is saying that (when forgetting about the spinor index) the vector ϕa is Gab-orthogonal to

the billiard velocity β̇b (3.22). As, by the Hamiltonian constraint (2.7), β̇a is a Gab-lightlike

vector, ϕa must then be either Gab-spacelike or parallel to β̇a, so that Qvs(ϕ) ≥ 0 (when

evaluated on real, commuting variables).

In addition to this positivity property, the supersymmetry constraint S (3.22) also

guarantees that the norm Qvs (3.26) is not affected by the following Maxwell-like (longi-

tudinal) ‘gauge transformation’ of ϕa along the lightlike direction β̇a (2.7) with any Dirac

17The form (·|·) is symmetric when evaluated on commuting variables, but antisymmetric for Grassmann

variables.
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spinor ξ ∈ 32:

Qvs(ϕ′) = Qvs(ϕ) (3.27)

for ϕ′a = ϕa + β̇aξ.

As another example of the intriguing appearance of a Maxwell-type structure in the

fermionic billiard, it is interesting to observe that supersymmetry is a particular case of

this gauge transformation (3.27). To show this, we insert the redefinition (3.9) into the

supersymmetry variation δϕa (eq. (3.9) in [7]). Then in the BKL-limit, due to simplifi-

cations similar to those that occurred in the evaluation of the supersymmetry constraint

S (3.21), the only surviving term on the r.h.s. of eq. (3.9) in [7] comes from the term

∝ 1
2NΩ0(ab)Γ

bΓ0ε which yields (when keeping the only billiard-surviving contribution to

Ω0(ab), which comes from the time derivative of the diagonal part of the metric)

δǫϕ
a =

1

2
β̇aǫ. (3.28)

Note that since β̇a is a lightlike direction (2.7), a supersymmetry variation leaves invariant

the orthogonality imposed by the supersymmetry constraint S (3.22). However, in con-

tradistinction to the arbitrary Dirac spinor ξ that we could use in our definition (3.27)

of a general ‘coset Maxwell-like gauge transformation’, the supersymmetry transformation

parameter ǫ (3.28) is not arbitrary. Since local supersymmetry has been used to gauge-fix

ψ0 to vanish (3.3), only residual “quasi-rigid” transformations are admissible. In other

words, ǫ is subject to the constraint δǫψ
0 = 0, which yields (see eq. (5.2) of [7])

∂tǫ = Qs(t)ǫ (3.29)

where Q (2.23) is again the same connection that entered the evolution equation for both

the bosons (2.25) and the gravitino (3.4), except that now it acts in the Dirac spinor

representation s of K(E10) (3.12). The previous reasoning (based on the spiky nature of

Q(t)) then shows that the dynamics of ǫ (3.29) in the BKL-limit also follows a chaotic

billiard motion. In this ‘Dirac billiard’, any collision of the scale factors βa with a wall α

induces a K(E10)-rotation Rs
α,εα

(3.18) in the Dirac spinor representation s (i.e. a 32 ×
32-matrix) in complete analogy to the transformation of the supersymmetry constraint

S (3.23):

ǫ′ = Rs
α,εα

ǫ. (3.30)

Note how this result, together with the rα transformation law of β̇a upon collision on

a wall (2.14), implies that the supersymmetry variation term δǫϕ
a (3.28) varies, under

a collision, in exactly the same factorized way as the full ϕa (3.17). This is another

check of the consistency of our findings. Due to the importance of the rotations Rs
α,εα

for the dynamics of all fermions, we will continue their analysis in the following section.

To conclude, let us remark that eq. (3.28) shows that the effective Maxwell-like gauge

transformations of the ‘polarization vector’ added to the β-particle by the fermionic degrees

of freedom comes from supersymmetry transformations. This shows again how the billiard

limit exhibits some intriguing metamorphoses of gauge symmetries, as well as of group

symmetries (SO(10) ↔ SO(9, 1)).
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3.5 Spin extension Wspin of the Weyl group W of E10

Summarizing the review of section 2.1, the bosonic dynamics reduce in the BKL-limit

to the evolution of the scale factors βa (2.4) that follow a billiard motion: Hitting the

cushion of the billiard table corresponds to a collision with a dominant wall αi (2.10)

which interrupts the intermediate Kasner behaviour (2.6) and whose effect consists of a

Lorentzian reflection of the Kasner velocity va = β̇a (2.14). The link to the Kac-Moody

picture is established by identifying the dominant walls αi (2.10) with the simple roots of

the Kac-Moody algebra E10 and the space of scale factors βa with its Cartan subalgebra,

spanned by the co-roots α̌i = hi (2.22). Any Lorentzian reflection due to a collision with a

dominant wall αi then corresponds to a fundamental Weyl reflection rαi
∈ W [21]. Hence,

any sequence of collisions during the chaotic evolution of the bosonic billiard corresponds

to a word w in the Weyl group W of E10 in eq. (2.17), and the full evolution towards a

spacelike singularity corresponds to a semi-infinite Weyl word: · · ·wn · · ·w2w1.

We have shown in section 3.1 that the gravitino can be understood as a (spinor val-

ued) ‘polarization vector’ ϕa associated to the scale factors βa. In particular, any collision

induces a discrete K(E10)-rotation Rvs
α,εα

(3.7) in the (unfaithful) vector-spinor represen-

tation. When acting on this ‘polarization vector’ ϕa, the discrete K(E10)-rotation Rvs
α,εα

factorizes as the tensor product of an ordinary Weyl reflection rα (acting on the vector

index of the suitably redefined gravitino variable ϕa (3.9)), and of a Dirac spinor rotation

Rs
α,εα

(3.17), (3.18) (acting on the hidden spinor index of ϕa).

These results suggest that to describe the general behaviour of fermions in the billiard

limit, one should consider a certain abstract ‘spin’ extension of the Weyl group of E10

(and more generally of any Kac-Moody algebra), say Wspin. This group can be abstractly

‘defined’ as the ‘discrete’ subgroup of (a suitable covering of) the ‘group’ K(E10), which is

(multiplicatively) generated by the formal exponentials

R±
αi

:= e±
π
2
Jαi , (3.31)

where i labels the simple roots (i = 1, . . . , 10 in the E10-case) and, where Jα ≡ Eα+ω(Eα) =

Eα − E−α (2.20) is an element of the K(E10) Lie algebra. We have put some quotation

marks in this definition, because the precise mathematical setting within which one could

define, in full generality, the ‘group’ K(E10), its needed ‘spin’ covering (analogous to the

Spin(n) covering of SO(n)), and the formal exponentials (3.31), is unclear to us.18 On the

other hand, our study above has given us two concrete realizations of the abstract genera-

tors (3.31), namely Rvs
α,εα

(3.16) and Rs
α,εα

(3.18). We shall then focus in the following on

the two corresponding matrix groups, say Wvs and Ws. We define Wvs as the subgroup of

GL(320) multiplicatively generated by (for i = 1, . . . , 10)

Rvs
αi

:= e
π
2
Jvs

αi (3.32)

18This covering can probably be viewed as the amalgamation of Spin(2) groups associated to each SO(2)

group generated by Jαi
for any simple root αi. This interpretation will be supported by the observation

in eq. (3.34a) below that a rotation by 2π, i.e. R4
αi

= e2πJαi (3.31), indeed corresponds to a change of sign

acting in a spinorial representation of K(E10).
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and Ws as the subgroup of SO(32)19 multiplicatively generated by the matrix exponentials

of Js
αi

(3.12)

Rs
αi

:= e
π
2
Js

αi . (3.33)

Here, we have dispensed with the signs εα = ± that entered our study above for two

reasons:

1. We shall see that the matrix generators Rvs
αi

and Rs
αi

are idempotent (so that a

suitable power of, say, Rvs
αi

equals (Rvs
αi

)−1 = e−
π
2
Jvs

αi ).

2. The sign of Eαi
and therefore of Jαi

= Eαi
− E−αi

(2.20), is conventional and can

therefore be changed to absorb any sequence of εαi
, without loss of generality.20

With this notation, we have proven some mathematical results on the concrete, matrix

groups Wvs and Ws that we can summarize as follows, before indicating the main elements

entering the proofs (the mathematical details of which are given in appendix C).

Proposition 1

• The vector-spinor realization Wvs of Wspin, i.e. the group multiplicatively generated

by the ten 320 × 320 matrices Rvs
αi

(3.32), is infinite.

• The generators Rvs
αi

of Wvs satisfy the following generalized Coxeter relations:

(a) For all nodes αi in the Dynkin diagram of E10 (figure 1), we find

(

Rvs
αi

)4
= −1l. (3.34a)

(b) For adjacent nodes αi, αj , the corresponding generators fulfill

(

Rvs
αi
Rvs

αj

)3
= −1l. (3.34b)

(c) For non-adjacent nodes αi, αj , the corresponding generators commute.

• The squares of the matrices (Rvs
αi

)2 generate a normal subgroup Dvs of Wvs, which is

non-abelian and whose cardinality is 2048.

• The Weyl group W of E10 is isomorphic to the quotient group Wvs/Dvs:

W ≃ Wvs/Dvs. (3.35)

The corresponding statement concerning the Dirac-spinor realization of Wspin looks

similar, but differs in a very important aspect: Ws is a finite group, while Wvs was infinite

(like the Weyl group of E10):

19We recall that the Jvs

αi
preserve the Euclidean norm Qs(ǫ) = ǫT ǫ [7].

20Note in this respect that εαi
is the sign of a conserved quantity in the BKL-limit. Hence, the sign εαi

for any dominant wall αi cannot flip during the asymptotic Billiard dynamics.
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Proposition 2

• The spinor realization Ws of Wspin (i.e. the group multiplicatively generated by the

ten 32 × 32 matrices Rs
αi

(3.12), (3.33) with i = 0, . . . , 9) is of finite cardinality.

• The generators Rs
αi

of Ws fulfill the same generalized Coxeter relations (3.34) as

those of Wvs.

• The squares of the matrices (Rvs
αi

)2 generate a normal subgroup Ds of Ws, which is

isomorphic to Dvs defined for the vector-spinor representation.

• There exists a homomorphism Φ mapping the Weyl group W of E10 to the quotient

group Ws/Ds:

Φ : W → Ws/Ds. (3.36)

The non-trivial kernel of Φ forms an (infinite cardinality) normal subgroup of the

Weyl group W of E10.

It is interesting to contrast these results on what we called representations of the ‘spin’

extension Wspin of the Weyl group, to the results of Kac [21] (p.36) on some representations

of the usual Weyl group W of a Kac-Moody algebra, namely:

Proposition 3 [Kac]

Let ρ be an integrable21 representation of E10 on a vector space V . To any Chevalley triple

(ei, fi, hi) with i = 0, . . . , 9, linked to the ten nodes in the Dynkin diagram of E10 (figure 1

on page 7), associate an element in the space of endomorphisms End(V ) by

rρ
αi

:= exp(fρ
i ) exp(−eρi ) exp(fρ

i ). (3.37)

These ten elements rρ
αi generate a group Wρ ⊂ End(V ). Furthermore, their squares form

an abelian normal subgroup Dρ of Wρ

Dρ := 〈〈(rρ
αi

)2|i = 0, . . . , 9〉〉 (3.38)

such that the quotient group is isomorphic to the Weyl group W of E10

W ≃ Wρ/Dρ (3.39)

Referring to appendix C for details of the proofs of proposition 1 and 2, let us comment

on some of their salient aspects:

• The fact that for Wvs and Ws, we get the specific generalized Coxeter relations of

propositions 1 and 2 (i.e. (Rvs
α )4 = −1 and therefore (Rvs

α )8 = 1 instead of r2α = 1 for

the usual Weyl group) comes from the spinorial nature of the representations vs and

21A representation ρ of a Kac-Moody algebra on a vector space is called integrable, if the raising and

lowering operators ei and fi, defined in section 2.3, are represented as locally nilpotent endomorphisms [21].
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s. Technically, this is due to the factor 1
2 in Js

α = 1
2Γα which leads to factors e±

iπ
4

in Rvs
α and Rs

α. By contrast, the action of Rα = e
π
2
Jα on a Cartan valued P in the

coset representation led (as in the setting of Kac’s proposition 3) to phase factors

e±iπ in Rcoset
α (2.39), (2.46). More generally, note that an eigenvalue ±is of Jα (that

we shall refer to as being ‘spin s’) entails a phase factor e±
iπ
2

s. In this language, the

phase factors e±iπ in Rcoset
α can be thought of as coming from the fact that P(0)

ab was

a symmetric SO(10)-tensor, hence ‘spin 2’ versus ‘spin 1
2 ’ of the basic Dirac-spinor

representation Js
α = 1

2Γα with (Γα)2 = −1l. [Note in this respect that the type of

generalized Coxeter relations, and associated extensions of the Weyl group that have

been studied in [21, 25] would, in the present language, be connected to integer ‘spin

s’. The integral nature of s guarantees for these cases that the Weyl group is extended

in such a way that the generators e
π
2
Jαi (i = 0, . . . , 9) are represented by fourth roots

of unity.]

• The finiteness of Ws was far from being a priori evident. This finite cardinality does

not follow from the unfaithfulness of the spinor representation because the vector

spinor representation vs is also unfaithful (it leads to a finite-dimensional represen-

tation space), but Wvs is infinite. This finite cardinality does not either follow alone

from the fact that Ws preserves a positive definite norm, namely Qs(ǫ) = ǫT ǫ, be-

cause the action of the infinite Weyl group on the compact unit spere ǫT ǫ = 1 in R
32

could have led to a ‘chaotic’ non-periodic action with many accumulation points.

• The technical difficulty in proving the finiteness of Ws came from the fact that (using

(Γα)2 = −1, like i)

Rs
α = e

π
2
Js

α = e
π
4
Γα

=
1 + Γα

√
2

(3.40)

contains
√

2 in the denominator. Therefore, a product of n exponentials or, as we

shall say, a word of length n, Rs
α1
Rs

α2
· · · Rs

αn
a priori contains a factor (1/

√
2)n which

could decrease without bound as n → ∞ and generate an infinite number of group

elements in Ws. Appendix C explains in detail how we surmounted this difficulty.

Let us here only say that we used a four-pronged approach:

(1) We crucially use the fact that we are working within an algebra, which follows

from the representation in eq. (3.40). The anticommutation properties of Clif-

ford matrices Γa then imply some definite (anti-)commutation relations among

the Rs
α which involve coefficients of the form a+ b

√
2 with a, b ∈ Z. At this first

step, the use of the algebraic relations among elementary products Rs
α1
Rs

α2
· · ·

has allowed us to push the dangerous
√

2’s up to the numerator.

(2) Then using repeatedly, as in the proof of Wick’s theorem, the (anti-)commutation

relations among the Rs
α, we can reorder any element of Ws and express it as a

finite linear combination of ordered Rs
α-products with Z[

√
2]-valued coeffcients.

[Here we use the fact that the Galois extension Z[
√

2] = {a + b
√

2; a, b ∈ Z} is

a ring, i.e. that it is stable under addition and multiplication.] This leads to
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the following result: any word w in Ws uniquely corresponds to an element in

a Z[
√

2]-lattice spanned by the finite basis of ordered products Rs
α1
Rs

α2
, . . . .

(3) At this stage, we can substitute the expression (3.40) of Rs
αi

in terms of Γ-

matrices in the general expression of any word w in Ws. This change of basis

introduces
√

2-denominators, but only up to a finite power (which turns out to

be (1/
√

2)10), because the basis is finite.

(4) Expressing the ‘orthogonality’ (wTw = 1l32) of a general word w ∈ Ws ⊂ SO(32)

then leads to many Z[
√

2]-valued diophantine equations for the coefficients dA ∈
Z[
√

2] of the expansion of w (with A labelling the finitely many basis elements).

One of these Z[
√

2]-diophantine equations reads

32 =
∑

A

d2
A. (3.41)

Although the lattice of generalized integers a + b
√

2 is dense on the real line,

there is a finite number of Z[
√

2]-valued points on the ‘sphere’ (3.41) (as can

be easily seen by decomposing eq. (3.41) in its two components along the basis

{1,
√

2}).

It might be interesting to add that our proof of proposition 2 of the generalized Coxeter

properties and of the finiteness of the spinor representation Ws of the abstract Wspin on

the one hand can be straightforwardly generalized to other Kac-Moody algebras, and, on

the other hand, can be reformulated within a more abstract setting which does not make

use of the gamma-matrix realization (3.13), (3.14) of the ‘compact’ generators Js
αi

. Indeed,

it seems that the main structure behind the proof is the following abstract, Kac-Moody

related ‘graded Clifford algebra’. First, independently of any explicit representation, we can

always define some abstract generators Γαi (associated to each node of a Dynkin diagram)

as Γαi := 2Js
αi

, i.e. such that eq. (3.13) holds by definition. An abstract ‘Dirac-spinor’

realization can then be defined by requiring that:

(1) all the ‘spin eigenvalues’ of the basic (‘Hermitian’) rotation generators iJs
αi

are equal

to jsαi
= ±1

2 . This implies that (Γαi)2 = −1l;

(2) the Γαi ’s corresponding to different nodes of the Dynkin diagram satisfy either an-

ticommutation or commutation relations [Γαi ,Γαi ]± = −δij. E.g. for the E10 case,

we have anticommutation for adjoint nodes (when Aij = −1), and commutation for

disconnected nodes (Aij = 0).

The same relation between this ‘graded’ Clifford structure22 (anticommutation versus com-

mutation) and the Dynkin diagram (Aij = −1 or Aij = 0) holds (in the generic case

D > 4) for the AED−1 Kac-Moody algebra associated to pure gravity in space-time di-

mension D [12]. [The case D = 4, which will be treated below, is non-generic in that the

22It seems that this structure, i.e. the properties (1), (2) above, follow from the requirement that the

eigenvalues of a general K(E10)-normalized (
P

i n2
αi

= 1 in the simply-laced case) linear combination
P

i nαi
Jαi has eigenvalues ± i

2
.
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special ‘gravity-wall’ generator Γα∗ commutes with the symmetry-wall generators.] Our

proof applies in such a general setting (provided the strictly ordered products of Γαi ’s de-

fine a linearly independent basis), even if the representation space were infinite (though

necessarily made of finite, reducible components).

Concerning the links between the content of the propositions 1 and 2, and Kac’s

proposition 3, we think that the definition of rρ
αi (3.37), though it looks very different from

that of R−
αi

= e−
π
2
Jαi (3.31), will be formally equivalent to it in any E10-representation ρ in

which the exponential e−
π
2
J

ρ
αi is well defined.23 Indeed, a reshuffling (à la Baker-Campbell-

Hausdorff), needed to pass from one form to the other, only involves commutators of

the sl2 subalgebra generated by ei, fi and hi = [ei, fi], so that it should suffice to check

it in the natural representation [21] esl2i =
(0 1
0 0

)

, f sl2
i =

(0 0
1 0

)

and Jsl2
αi

= esl2i − f sl2
i =

( 0 1
−1 0

)

. For this case, one finds rsl2αi
=
(0 −1

1 0

)

that indeed agrees with exp(−π
2

( 0 1
−1 0

)

) =

−
( 0 1
−1 0

)

.24 Note in this context that an extension of the Weyl group of a Kac-Moody

algebra, together with generalized Coxeter relations, also appears in the construction of

the underlying Kac-Moody group structure in the work of Kac and Peterson [25]. However,

ref. [25] introduces an extension of the Weyl group by (Z2)
r (where r is the rank), which

means that the generalized Coxeter generators are fourth roots of unity (contrary to our

‘spinorial’ extension that involves eighth roots of unity).

It is clear that there are similarities between the statements made in the propositions

1-3. In particular, the group Wρ of proposition 3 also is an extension of the Weyl group.

We wish however to emphasize that our results in the propositions 1 and 2 can in no way

be deduced from proposition 3 for several deep reasons. First, our propositions concern

K(E10) representations and not E10 representations. Although any E10 representation

also is a K(E10) representation by restricting the action of E10 to its subalgebra K(E10),

the reverse is clearly false in the case we consider in our propositions, because both the

vector-spinor representation vs (3.5) and the spinor representation s (3.12) of K(E10) being

unfaithful (and finite-dimensional) can certainly not be lifted to representations of E10

[indeed, E10, being simple, does not admit unfaithful representations (apart from the trivial

one)]. Second, the structure of the normal subgroups that are factored out is different: while

in our propositions the normal subgroups Dvs,Ds are non-abelian, Dρ is abelian in the case

of proposition 3.

Note, however, that Kac has used the setting of his proposition 3 to prove a result which

is closely related to the one we found above for the bosonic billiard. Indeed, by applying

the proposition to the adjoint representation ρ = ad, he showed that the adjoint action of

radαi
(3.37) to the Cartan subalgebra h ⊂ E10 reproduces the action of the fundamental Weyl

reflection rαi
[21]. Given, for E10 representations ρ, the link rρ

α ∼ e±
π
2
J

ρ
α mentioned above,

this agrees with our observation in section 2.4 in which we evaluated the K(E10)-rotation

RAd
αi,εαi

(2.44) on the element of the Cartan subalgebra that corresponded to an incoming

Kasner geodesic (2.45), (2.47).

23Any E10 representation ρ, defined by the representation of the Chevalley generators (eρ
i , f

ρ
i , hρ

i ), canon-

ically induces a representation of its subalgebra K(E10), generated by Jρ
αi

:= eρ
i − fρ

i (2.20).
24Note that one would have obtained exp(+π

2

`

0 1
−1 0

´

), if one had changed fi 7→ −fi, ei 7→ −ei in Kac’s

definition (3.37).
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In the next section, we will investigate the truncation of SUGRA11 to D = 4 N =

1 supergravity that can be linked to the Kac-Moody algebra AE3 in the BKL-limit as

mentioned in section 2.2. The analysis of this simpler case will provide a useful ‘toy setting’

in which some aspects of our E10 results become easier to analyze in detail. In particular,

we shall be able to solve explicitly the supersymmetry constraint S (3.22) and to explicitly

exhibit the remaining degrees of freedom of the gravitino in terms of two Dirac spinors.

4 Fermionic billiard of D = 4 N = 1 supergravity and its K(AE3)

structure

4.1 AE3 and D = 4 N = 1 supergravity

In order to facilitate the link to the E10-description of maximal supergravity, we want to

describe D = 4 N = 1 supergravity as a truncation of the former theory reduced on a

seven-torus T 7. The analysis of section 2.2 reviewed the known fact that the hyperbolic

Kac-Moody algebra AE3 naturally appears in a description of the BKL-limit of d = 4

gravity [1, 14]. We start this section with a review of the bosonic dynamics. Since the

gravitational walls are linked to the structure functions Ca
bc introduced in section 2.2, it

is sufficient to focus on their dominant contribution to the supergravity Lagrangian in the

BKL-limit, which is

LC = −Vg

= + det(gmn)Rspatial

= −1

4

3
∑

a,b,c=1

e−2α
g
abc

(β)(Ca
bc)

2 + subleading terms (4.1)

where the gravitational wall αg
abc was defined in eq. (2.18) and where we used as usual the

gauge choice N =
√

det(gmn) (2.2) [14] with m,n = 1, 2, 3. It was shown in [4, 11, 14]

that the (Iwasawa frame) structure functions Ca
bc have limits on the singularity, and that

they can be identified with the conserved conjugate momenta Πα (2.31) of coset variables

να parametrizing a level-1 coset variable Φab = Φba. Here, we are interested in extracting

from all the gravitational walls the dominant one near the singularity. In view of the

ordering among the β’s imposed by the symmetry walls (αs
(12)(β) > 0 and αs

(23)(β) > 0

implying β1 < β2 < β3), it is easily seen that the dominant gravitational wall will be

αg
123, which is connected to C1

23. Then, either by using the coset-gravity dictionary given

in [4, 14], or by identifying (in the gauge n = 1) the one wall potential e−2α∗(β)Π2
α∗

of

eq. (2.33) to the dominant gravitational potential 1
4e

−2α
g
123(β)(C1

23)
2 (4.1), we find that

the dominant gravitational wall α∗ ≡ αg
123 contributes the following term to the coset

connection Q|α (2.36):

Q|α∗
=

1

2
e−α∗(β)C1

23Jα∗ . (4.2)

This equation will be crucial to obtain the correct normalization of the K(AE3)-generator

Jα∗ in the next section.
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4.2 K(AE3) and the fermions of D = 4 N = 1 supergravity

The dynamics of the gravitino ψ of D = 4 N = 1 supergravity can e.g. be taken from [26]

(neglecting third order terms in fermions and with ∂t = N∂0)

0 =

3
∑

α=0

γα∇[αψβ] (4.3)

with the standard Levi-Civita connection ∇, the Clifford algebra {γα, γβ} = ηαβ and

η = diag(− + ++). We use the same redefinitions (3.2) as for the E10-case (i.e. the same

rescaling, but with indices restricted to a = 1, 2, 3) and adopt the supersymmetry gauge

ψ0 = 0 (3.3). This leads to the following explicit form for the time evolution of the (coset)

fermionic variable ψa (using Einstein’s summation convention)

− ∂tψa = N

(

ω0abψ
b +

1

4
ω0efγ

efψa (4.4)

+(ωabc − ωbac)γ
0γbψc +

1

2
ωabcγ

0γbcdψd −
1

4
ωbcdγ

0γbcdψa

)

.

Our task now is to single out on the r.h.s. of this equation the dominant terms in the

BKL-limit: i.e. the ones corresponding to the two symmetry walls αs
(12), α

s
(23) and the

gravitational wall α∗ = αg
123. First, we notice that the temporal derivatives of the metric

coefficients completely follow the scheme used in the E10-case (3.4), (3.5): They give rise

to the symmetry walls (2.9). One then easily finds that they lead to the same results

(restricted to indices a = 1, 2, 3) for the corresponding ‘compact’ generators Jαs

(12)
, Jαs

(23)
.

Denoting for simplicity α1 := αs
(12) and α2 := αs

(23) as in (2.9), one finds the following

explicit expressions for the two putative K(AE3) generators Jα1 and Jα2 corresponding to

these symmetry walls:

Jvs
αi

(ψ)a =
1

2
γiγi+1ψa + 2δa[iψi+1] for i = 1, 2. (4.5)

If we now extract from the r.h.s. of eq. (4.4) the contribution proportional to the dominant

gravitational wall α∗ := αg
123, we must be careful to collect several different connection

terms. Indeed, C1
23 is proportional to Ω231 in the notation of [7]. Then the formula giving

the ‘spin connection’ ωabc in terms of Ωabc (see eq. (A.5)) shows that C1
23 ∝ Ω231 will enter

in ω123, ω231 and ω312. Finally, we get that the dominant gravitational wall contribution

to the equation of motion reads after substituting (2.2), (2.3):

−∂tψa =
1

2
e−2β1

C1
23γ

0

(

4δ[2a γ
3]ψ1 + γ123

[

1

2
ψa − 2δ1aψ

1

])

.

By rewriting this equation in the universal coset-model form (3.4)

∂tψ = Qvs(ψ), (4.6)

we can fix (by comparison with our previous result (4.2), and remembering that the dom-

inant gravitational wall α∗(β) = 2β1 (2.18) does indeed give a factor e−α∗(β) = e−2β1
) the
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form of the putative K(AE3) vector-spinor representation vs of the generator Jα∗ in terms

of γ-matrices:

Jvs
α∗

(ψ)a = −γ0

(

4δ[2a γ
3]ψ1 + γ123

[

1

2
ψa − 2δ1aψ

1

])

. (4.7)

At this stage, we extracted from the SUGRA4 fermionic equations of motion explicit γ-

matrix expressions for the generators Jvs
α1

, Jvs
α2

and Jvs
α∗

that should give rise to a ‘vector-

spinor’ representation of K(AE3). The proof that these generators indeed form a represen-

tation of the compact subalgebra K(AE3) of AE3 crucially depends on the correct normal-

ization of the ‘gravitational wall’ generator Jvs
α∗

(which is fixed by the precise coefficient in

eq. (4.2)). We start by recalling that K(AE3) is defined by the free Lie algebra generated

by the compact generators Jαi
(2.20) for i = ∗, 1, 2 modulo Serre-like relations [7] that are

inherited from the Serre relations of AE3. In particular, the condition ad3
Eα∗

(Eα1) = 0 that

is encoded in the Dynkin diagram (figure 2 on page 8) gives rise to the following relation

for Jαi
involving the exceptional node:

ad3
Jα∗

(Jα1) + 4adJα∗
(Jα1) = 0. (4.8)

As in the K(E10)-case treated in [7], the manifest SO(d) invariance of the gauge-fixed

gravitino equations of motion (which follow from their original, local Lorentz covariance)

ensures that the condition (4.8) is the only Serre-like relation that needs to be checked.

By doing the explicit γ-algebra calculation involved in eq. (4.8) when using the expres-

sions (4.5), (4.7) for Jvs
α in terms of γ-matrices, we have verified that eq. (4.8) is fulfilled

and hence, that these generators Jvs
α ∈ R

12×12 indeed form a matrix representation of

K(AE3).

This result was expected because the fact that the equations of motion of SUGRA4

admits a K(AE3)-covariant coset reformulation (in the BKL-like approximation where one

keeps the leading effect of all the gravitational walls αg
abc with a, b, c all different), actually

follows from three known results:

(1) The fermionic dynamics of SUGRA11 admits a K(E10)-covariant reformulation up to a

level of approximation (“l = 3−”) which includes all the gravitational walls associated

to real roots [4].

(2) AE3 is a subalgebra of E10 obtained by keeping only a fraction of the generators of

E10 [21, 27]. This truncation, being compatible with the Chevalley involution, also

implies that K(AE3) is a subalgebra of K(E10).

(3) The dynamics of SUGRA4 can be obtained by reducing the dynamics of SUGRA11

(truncating away, in particular, both the spatial dependence upon a seven-torus T 7

and the corresponding gravitino components).

It is moreover interesting to note that the ‘gravity truncation’ mentioned in fact (3) does

canonically determine an embedding of AE3 within E10. Indeed, this truncation shows that,

besides the two dominant symmetry walls αs
(12), α

s
(23), surviving the reduction 10 + 1 →
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3 + 1, the third simple root of AE3 should come from the D = 11 (or E10) gravitational

wall associated with C1
23, whose dual form (entering the E10 gravity-coset dictionary [4,

8, 14]25) is Π1|1 4 5 6 7 8 9 10, and which is therefore associated to the level-3 E10 generator

E1|14...10. In other words, the gravity truncation 11 → 4 predicts that the subset of E10

generators26 e1 := K2
1 (associated to αs

(12)), e2 := K3
2 (associated to αs

(23)) and e∗ :=

E1|14...10 (associated to αg
123) together with their Chevalley duals fi and the corresponding

hi = [ei, fi] should be identifiable with the three basic Serre-Chevalley generators of AE3.

The fact that the Cartan matrix associated to α1, α2 and α∗ coincides with the Cartan

matrix of AE3 is known and has already been reviewed in section 2.2 above. It is less

evident that e1, e2 and e∗ satisfy the required Serre relations of AE3, and notably the

delicate one

ad3
e∗(e1) = 0. (4.9)

One can directly prove that (4.9) is satisfied within the E10 Lie algebra. Either one can use

the general theorem proven in [28] or notice that the putative E10-root 3α∗ +α1 associated

to the l.h.s. of (4.9) has a squared norm (3α∗ + α1)
2 = +8, which is too large for the l.h.s.

of (4.9) to be an E10-generator.27

This reasoning shows that the third K(AE3) generator Jα∗ = Eα∗ + ω(Eα∗) (with

Eα∗ = e∗) can be embedded within K(E10) as a generator of the form28

Jα∗ = cα∗J
1|1 4...10 = cα∗

(

E1|1 4...10 − F1|1 4...10

)

. (4.10)

By starting from the unfaithful K(E10) representation of Ja0|aa...a8 given in eq. (2.30)

of [7], and decomposing the Clifford(10) algebra according to Γa′
= γa′ ⊗1l8 (for a′ = 1, 2, 3

and setting ψā = 0 for ā = 4, . . . , 10), we have checked the consistency of (4.10) with the

Clifford(3)-algebra representation (4.7) and determined that the numerical coefficient cα∗

in eq. (4.10) must be equal to cα∗ = ±1
3 . [This factor 1

3 also follows from the normalization

adopted in [7] for the level-3 generators which implies (E1|1 4...10|F1|1 4...10) = 9. The sign

of cα∗ is unimportant in the present context and can be fixed at will.]

4.3 Factorized structure of the K(AE3) fermionic billiard

Let us now describe the SUGRA4 fermionic dynamics in the billiard limit. The treatment

is parallel to the SUGRA11 case discussed in section 3.1 and consists in combining the

effects on ψ coming from successive chaotic collisions on the three dominant walls α1, α2

25In the notation of [4], this is DA1|14...10, and in the one of [8], it is P
(3)
1|14...10. It also corresponds to the

conjugate momentum Π11 of ϕ11 in [14].
26These conventions for the labelling of the generators is directly linked with the fact that the Iwasawa

variable N was chosen to be upper-triangular, which implied that e.g. αs

(12) = β2 − β1. Note that these

conventions differ from the ones used in [7], e.g. e
[DKN]
1 = K1

2. With our conventions, the exceptional

generator in the E10 context is e0 = E123 instead of e
[DKN]
0 = E8 9 10.

27We thank P. Cartier for suggesting this test.
28Note that for the truncation of SUGRA11 to supergravities in d + 1 dimensions (associated to the

Kac-Moody algebra AEd), the K(E10) generator linked to the dominant gravitational wall is Jα∗
=

cα∗
J1|1...d−2 d+1...10.
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and α∗ of AE3. As for maximal supergravity in eq. (3.7), we focus on a one-wall system

and integrate the equation of motion (4.6) as before. The computations from section 2.4

still hold for the AE3-case, with (4.2) replacing (2.36) for the dominant gravitational wall

α∗. Hence, the net effect of a collision with a wall α is a K(AE3)-rotation about the axis Jα

with an angle εα
π
2 . This rotation turns the incoming gravitino ψ into an outgoing one ψ′:

ψ′ = Rvs
α,εα

(ψ) (4.11)

with Rvs
α,εα

= eεα
π
2
Jvs

α being a 12×12 matrix acting in the vector-spinor representation space

of ψaA (where a = 1, 2, 3, while A = 1, 2, 3, 4 is a real Majorana spinor index). Similarly

to the SUGRA11 treatment above, we found that the transformation law of the gravitino

simplifies very much, if we replace ψa by the following redefined fermionic variable:

ϕa := γ0γ
aψa (no sum). (4.12)

With this redefinition, we find again, in complete analogy to (3.17), that the transforma-

tion (4.11) in the vector-spinor representation factorizes as the tensor product of a Weyl

reflection rα (now acting in a 3-dimensional vector space a = 1, 2, 3) with a Dirac-spinor

rotation eεα
π
2
Jvs

α (now acting in the 4-dimensional Majorana spinor space). In formulæ,

we have:

ϕ′a A =
3
∑

b=1

4
∑

B=1

[rα]a b

[

Rs
α,εα

]A
Bϕ

b B (4.13a)

where [rα(ϕ)]a = ϕa − 2α(ϕ)

(α|α)
α#a (4.13b)

and Rs
α,εα

:= eεα
π
2
Js

α (4.13c)

with Js
α being Dirac-spinor generators acting in the 4-dimensional Majorana spinor space.

For symmetry wall rotations associated to α1 and α2, this result follows from a straight-

forward truncation of the K(E10)-results, with the Dirac-spinor representation

Js
αi

=
1

2
γiγi+1 for i = 1, 2. (4.14)

By contrast, the gravitational wall case needs a special treatment that we now sketch. We

start with the observation that the redefinition (4.12) simplifies the Lie algebra transfor-

mation (4.7) (with Jvs
α∗

(ϕ)a = γ0γ
aJvs

α∗
(ψ)a) to

Jvs
α∗

(ϕ)a =
1

2
γ0γ

123
[

ϕa − 4(δa
1 − δa

2 − δa
3 )ϕ1

]

. (4.15)

The orthogonal and parallel components ϕa
⊥ and ϕa

|| (3.10) of the gravitino ϕa turn out again

to be ‘eigendirections’ and hence, the Jvs
α∗

-action simplifies in the same way as in (3.11):

Jvs
α∗
ϕa
|| = Js

α∗
ϕa
|| (4.16a)

Jvs
α∗
ϕa
⊥ = −3Js

α∗
ϕa
⊥ (4.16b)
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where Js
α∗

is the Dirac-spinor action now defined as

Js
α∗

=
1

2
γ0γ

123. (4.17)

In order to evaluate the group rotation Rvs
α,εα

(4.11) on the eigenspaces spanned by ϕ⊥ and

ϕ|| (4.16), we have to evaluate the exponential series defined in (4.13) for the gravitational

wall α∗:

Rs
α∗,εα∗

= eεα
π
2
Js

α∗ . (4.18)

Since the difference of the action on the eigenspaces (4.16) again is only a sign due to

e−
3iπ
4 = −e iπ

4 , we finally obtain after recombining ϕ = ϕ⊥ + ϕ|| the factorized transfor-

mation of the gravitino that we quoted above (and that is completely similar to (3.17)).

Let us also note (for future use) that the explicit form of the Weyl reflection rα∗ at the

gravitational wall α∗ = αg
123 = 2β1 reads:

rα∗(ϕ)a = ϕa − 2(δa
1 − δa

2 − δa
3)ϕ1. (4.19)

We will continue the investigation of this gravitino billiard in the next section, taking into

account the supersymmetry constraint S.

4.4 ‘Longitudinal’ and ‘transversal polarizations’ of the ‘β-photon’

Concerning the supersymmetry constraint S, the AE3 model, describing the BKL-limit of

N = 1 d = 4 supergravity, exhibits a qualitative difference with respect to the E10-case of

maximal supergravity: the constraint S ≈ 0 can be solved explicitly, which entails that the

gravitino or ‘polarization vector’ ϕa can be split into a ‘longitudinal’ and a ‘transversal’

part, both being Dirac-spinor valued.29

As a first step, recall that the supersymmetry constraint in the billiard limit (far away

from any wall) only depended on the velocities β̇a, e.g. (3.21) for the E10-case. Since

N = 1 d = 4 supergravity can be obtained by a truncation of maximal supergravity as

explained in section 2.2, it is not a surprise that the equation of motion of the gravitino

component ψ0 (4.3) in the present discussion (after the standard rescaling (3.2) and gauge-

fixing ψ0 = 0 (3.3)) reduces to the obvious truncation of the formula (3.21):

0 ≈ SBKL =
3
∑

a=1

(

β̇a − σ
)

γ0γ
aψa (4.20)

with σ :=

3
∑

c=1

β̇c. (4.21)

As before, the formulation in terms of the redefined gravitino ϕa (4.12) allows one to write

S as an orthogonality constraint with respect to the Lorentzian β-space metric Gr (2.5):

0 ≈ SBKL =

3
∑

a,b=1

Gr
abβ̇

aϕb. (4.22)

29Note however that these components do not transform as Dirac spinors under K(AE3) as we shall see

in eq. (4.31) below.
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From the point of view of the 3-dimensional Lorentzian geometry of β-space (forgetting

about the hidden spinor index), the supersymmetry constraint S ≈ 0 (4.22) is a scalar

constraint on the 3-dimensional vector ϕa. It therefore restricts the gravitino ϕa to live in

a 2-dimensional hyperplane (actually, the ‘null’ hyperplane tangent along β̇ to the β-light-

cone). One can then explicitly parametrize ϕa in terms of two (spinor-valued) scalars, say

η and Φ, by using the existence of the cross product of vectors in three dimensions:

ϕa =
1

σ
β̇aη +

1

σ

3
∑

b,c=1

εabcubβ̇cΦ. (4.23)

Here, σ is the quantity (4.21), ε123 = +1, and ua denotes the timelike vector in β-space

which has unit (contravariant) components: u = (1, 1, 1). The vector ua plays a somewhat

special role in the AE3 billiard in that it naturally relates the Lorentzian metric Gr (2.5)

to the Euclidean metric, say v · w :=
∑3

a=1 v
awa. Indeed, we have the identity:

3
∑

a,b=1

Gr
abv

awb = v · w − (u · v)(u · w). (4.24)

Keeping in mind that β̇a is lightlike (2.7), the parametrization of ϕa in terms of Φ and η is

easily seen to span the general solution of the supersymmetry constraint SBKL ≈ 0 (4.22).

It is also easy to invert the parametrization (4.23) (constrained by (4.22)) and to express

the two ‘scalars’ η and Φ in terms of ϕa (using σ = u · β̇ (4.21) and σ2 = β̇ · β̇ (2.7)):

η =
1

σ

3
∑

a=1

β̇aϕa (4.22)
=

3
∑

a=1

ϕa (4.25a)

Φ =
1

2σ

3
∑

a,b,c=1

εabcuaβ̇bϕc (4.25b)

Pursuing the analogy of considering the gravitino ϕa as a polarization vector, η and Φ can

be thought of as its longitudinal and transversal part, respectively. This point of view is

reinforced by the fact that the bilinear form (·|·) (3.25) for any two ‘polarizations’ ϕ1, ϕ2,

having the same null velocity β̇a, only depends on their transversal parts Φ1,Φ2 (4.23):

(ϕ1|ϕ2) = 2ΦT
1 Φ2 (4.26)

where ΦT
1 Φ2 =

∑4
A=1 ΦA

1 ΦA
2 involves a trace over the hidden spinor indices. Note also that

the ‘gauge transformation’ of the gravitino ϕa along the lightlike direction β̇a preserves

this bilinear form (3.27) and correspondingly only affects the longitudinal part η. At this

point, we want to emphasize again that the decomposition of ϕa into two scalar-like com-

ponents (4.23) is a peculiarity of the three dimensions of the β-space of SUGRA4 (or AE3).

In higher dimensions (i.e. higher rank), one will still have β̇ and u as special directions in

β-space, but they will not provide enough structure for selecting special directions in the

null hyperplane orthogonal to β̇a (besides the ‘longitudinal’ direction β̇a itself). Note also

that instead of parametrizing ϕa (in the AE3 case) by two scalars, one could have also
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parametrized it by a lightlike vector λa (
∑3

a,b=1G
r
abλ

aλb = 0), with λa 6= β̇a by writing

ϕ = β̇ × λ, i.e. ϕa =
∑3

b,c=1 ε
a
bcβ̇

bλc (with εabc =
∑3

b′,c′=1G
r
bb′G

r
cc′ε

ab′c′). We shall come

back to this possibility below.

As a next step, we will investigate the transformation of the parameters η and Φ under

a collision with a dominant wall. At first, recall that the dynamics of the velocities β̇ is

described by the bosonic billiard, i.e. for any dominant wall α with (α|α) = 2, we obtain

the Weyl reflection (2.14)

β̇′ = rα(β̇) = β̇ − α(β̇)α#. (4.27)

For the dominant symmetry walls α1 and α2 (2.10), the reflection rαi
(4.27) reduces to a

mere permutation:

rα1







β̇1

β̇2

β̇3






=







β̇2

β̇1

β̇3






and rα2







β̇1

β̇2

β̇3






=







β̇1

β̇3

β̇2






. (4.28)

Since these permutations leave the unit vector u = (1, 1, 1) as well as σ (4.21) invariant and

since their determinant is −1, the relations (4.13), (4.25) immediately fix the transformation

of η and Φ for the symmetry walls αi with i = 1, 2 in terms of the Dirac spinor action

Rs
αi,εαi

(4.13):

η′ = Rs
αi,εαi

η (4.29a)

Φ′ = −Rs
αi,εαi

Φ. (4.29b)

On the other hand, a collision with the gravitational wall α∗ induces the Weyl reflection

rα∗ (4.19)

β̇′ = rα∗







β̇1

β̇2

β̇3






=







−β̇1

β̇2 + 2β̇1

β̇3 + 2β̇1






. (4.30)

It implies σ′ = σ+ 2β̇1 (4.21) and it allows one to deduce the induced transformations for

Φ and η using the Hamiltonian constraint β̇ · β̇ = σ2 (2.7):

η′ = Rs
α∗,εα∗

((

1 +
2

σ
β̇1

)

η +
2

σ
(β̇3 − β̇2)Φ

)

(4.31a)

Φ′ = −Rs
α∗,εα∗

Φ (4.31b)

The gauge direction or longitudinal polarization η is changed in an inhomogeneous way,

in contradistinction to the transversal polarization Φ. This implies that neither η nor Φ

transform in the Dirac spinor representation of K(AE3), the former due to the inhomogene-

ity and the latter due to the sign in (4.29b), (4.31b).30 The homogeneous transformation

behaviour of the transversal polarization Φ was expected due to the preservation of the

Euclidean norm (ϕ|ϕ) = 2ΦT Φ (4.26). By contrast, as this norm does not contain η it does

not provide any means to control the evolution of the longitudinal polarization η and is

thereby compatible with the inhomogeneous character of (4.31a).

30Φ could, however, be described as a pseudo-Dirac spinor, in analogy to a pseudo-scalar in particle

physics.
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4.5 Fermionic billiard dynamics and BKL-eras

Let us now briefly discuss the qualitative evolution of η and Φ near a singularity. We recall

that, qualitatively speaking, the 3-dimensional BKL chaotic behaviour can be thought of

as made of eras that collect together (possibly long) sequences of Kasner ‘epochs’ (where

an epoch is an intervall between two successive wall collisions) [1]. To explain the meaning

of these eras, we start by recalling the ‘u-parametrization’ of the ‘Kasner circle’ [1]. First,

it is convenient to work with the Kasner exponents pa which are projective coordinates of

the (homogeneous) Lorentzian β-space velocities β̇a, namely

pa :=
β̇a

σ
with σ =

3
∑

a=1

β̇a and a = 1, 2, 3. (4.32)

By construction, these lie in the plane

p1 + p2 + p3 = 1. (4.33a)

Furthermore, the Hamiltonian constraint (2.7) also restricts them to a sphere

(p1)2 + (p2)2 + (p3)2 = 1. (4.33b)

The intersection is a circle that is parametrized by u ∈ R ∪ {∞} following [1]:

p1(u) =
−u
σu

, p2(u) =
1 + u

σu
, p3(u) = 1 − 1

σu
(4.34)

with σu = 1 + u+ u2.

The transformation of the projective velocities pa (4.32) under a collision with a dom-

inant wall directly follows from the action on the velocities β̇a (4.28), (4.30). These induce

the following transformations on the parameter u:31

rα∗(u) = −u (4.35a)

rα1(u) = −u− 1 (4.35b)

rα2(u) =
1

u
(4.35c)

Next, we recall that the Weyl reflections rαi
for i = ∗, 1, 2 fulfill the Coxeter relations that

follow from the Dynkin diagram of AE3 (figure 2). Apart from r2αi
= 1, these read

(rα∗rα2)
2 = 1 (4.36a)

(rα1rα2)
3 = 1 (4.36b)

(rα1rα∗)
∞ = 1 (4.36c)

The exponents k = 2, 3,∞ correspond to the angles π
k

between the dominant walls that

confine the billiard motion of the scale factors βa to a polyhedron, which intersects the

31As an example, the symmetry wall α1 interchanges p1 and p2 and leaves p3 inert (4.28). This implies

rα1
(p1)(u) = p2(u) = p1(rα1

(u)), rα1
(p2)(u) = p1(u) = p2(rα1

(u)) and rα1
(p3)(u) = p3(u) = p3(rα1

(u)).
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unit hyperboloid
∑

Gabβ
aβb = −1 into a hyperbolic triangle of finite volume. The spe-

cial geodesics with velocity u = +∞ correspond to the ones that end at the fixed point

(p1, p2, p3) = (1, 0, 0) (which corresponds to the flat Milne space-time), and hence do not

exhibit a chaotic behaviour. Chaos is restored for generic values of u ∈ R, however. In par-

ticular note that this fixed point is unstable, because any finite, but large value u decreases

in a sequence of consecutive collisions with the walls α∗ and α1 (4.35) due to:

rα1rα∗(u) = u− 1 (4.37)

This sequence is called a BKL-era of length n = [u] ∈ N [1].32 For long eras n≫ 1, we can

neglect contributions of order u−2, which simplifies the parametrization of the projective

velocities pa in terms of u (4.34) to

p1(u) ≈ −1

u
, p2(u) ≈ 1

u
, p3(u) ≈ 1.

Substituting this in the transformation for η (4.31a) yields for ηu−1 = rα1rα∗(η)u:

ηu−1 = Rs
α1,εα1

Rs
α∗,εα∗

((

1 − 2

u

)

ηu + 2

(

1 − 1

u

)

Φu

)

+ O
(

1

u2

)

.

We iterate this transformation n = [u] times and obtain for large n an approximate asymp-

totic relation linking the values at the beginning ηu to the ones at the end ηu−n of the

BKL-era:

ηu−n ≈
(

Rs
α1,εα1

Rs
α∗,εα∗

)n
(

1

n2
ηu + 2nΦu

)

. (4.38)

As for Φ, its evolution during the considered era is simply given by

Φu−n =
(

Rs
α1,εα1

Rs
α∗,εα∗

)n

Φu.

Qualitatively, we see that while the ‘spinor indices’ of both η and Φ continuously ‘rotate’

under the spinor actions Rs
α,εα

’s, their ‘scalar magnitudes’ evolve in very different ways:

the Φ one remains constant, while the η one is made of two parts: One part, 1
n2 ηu, decreases

during an era, while the other part, 2nΦ, linearly increases during an era. When considering

successive eras, this leads us to expect that the (gauge-like) ‘longitudinal’ part η will

perform very large ‘excursions’, whose ‘directions’ (in spinor space) are restricted to the

orbit of the Dirac spinor action Rs
α,εα

on Φ. In a ‘baby problem’, where we would replace

the ‘spinor direction’ by a direction in a complex plane, we conceive of η as performing a

kind of Brownian motion in the complex plane under a randomly oriented force (∝ Φ) that

grows linearly in time. In the next section, we shall study in detail the evolution of the

Φ degrees of freedom, i.e. the rotations in spinor space generated by the product of many

K(AE3) spinor rotations Rs
α,εα

.

32Here, n0 := [u] denotes the integer part of u. The generic chaotic dynamics can in fact be understood

as a sequence of BKL-eras, whose lengths ni are fixed by a continuous fraction decomposition of u, i.e.

u = n0 + 1

n1+ 1
n2+···

[1].
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But before doing so let us indicate that if one had used the parametrization of ϕa

by means of two lightlike vectors (β̇a, λb), the action of the fermionic billiard on the pair

(β̇a, λb) (where only λb has an extra spinor index) would be a “double BKL billiard”,

namely

β̇′ = rα(β̇) (4.39a)

λ′ = −Rs
α,εα

⊗ rα(λ) (4.39b)

with the same vector reflection rα (2.14) acting on the vector index of both light-like vectors.

We already know that the simple billiard β̇′ = rα(β̇) has interesting chaotic properties; we

shall see in the next section that the Rs
α,εα

-billiard is not chaotic, but rather periodic (finite

multiplicative group). This means that the ‘chaotic’ part of the ‘doubled billiard’ (4.39)

will essentially come from a double bosonic BKL billiard: β̇′ = rα(β̇), λ′ = rα(λ). We leave

to further work the study of these dynamics.

4.6 Spinorial extension of the Weyl group WAE3

An important link between the cosmological billiard dynamics and hyperbolic Kac-Moody

algebras g consists of the fact that any sequence of billiard collisions corresponds to a word

in the associated Weyl group Wg. We have transferred this idea to the fermionic dynamics

in section 3.5 by defining the spin extension Wspin
g of the Weyl group Wg. For g = E10,

we have found two concrete realizations Wvs
g and Ws

g in terms of matrix groups (generated

by the matrices Rvs
αi

(3.32) and Rs
αi,εαi

(3.33) respectively) that were characterized by the

propositions 1 and 2. For g = AE3, we can perform a similar analysis. Since AE3 is a

subalgebra of E10, the structure of the matrix realizations Wvs
AE3

and Ws
AE3

of the spin

extension of the Weyl group shows great similarity to the E10-case, as exemplified by the

following statements:

Proposition 4

• The vector-spinor realization Wvs
AE3

of Wspin
AE3

, i.e. the group multiplicatively generated

by the three 12 × 12 matrices Rvs
αi

= e
π
2
Jvs

αi (4.11) for i = ∗, 1, 2, is infinite.

• The generators Rvs
αi

of Wvs
AE3

satisfy the following generalized Coxeter relations:

(

Rvs
αi

)4
= −1l, (4.40a)

(

Rvs
α1
Rs

α2

)3
= −1l (4.40b)

and Rvs
α∗

commutes with Rvs
α2

.

• The squares of the matrices (Rvs
αi,+)2 generate a normal subgroup Dvs

AE3
of Wvs

AE3
,

which is non-abelian and whose cardinality is 2 × 8.

• The Weyl group WAE3 is isomorphic to the quotient group Wvs
AE3

/Dvs
AE3

:

WAE3 ≃ Wvs
AE3

/Dvs
AE3

. (4.41)

The discussion of the Dirac spinor action for the AE3-case can be made more precise

than the corresponding one for E10 in proposition 2:
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Proposition 5

• The spinor realization Ws
AE3

of Wspin
AE3

, i.e. the group multiplicatively generated by the

three 4 × 4 matrices Rs
αi

= e
π
2
Js

αi (4.14), (4.17) with i = ∗, 1, 2, forms a finite group

of cardinality 4 × 48.

• The generators Rs
αi

of Ws
AE3

fulfill an additional generalized Coxeter relation com-

pared to the ones of proposition 4: The matrix Rs
α∗

commutes with both Rs
α1

and

Rs
α2

, so that the group Ws
AE3

is the direct product of two separate groups.

• The squares of the matrices (Rvs
αi

)2 form a normal subgroup Ds
AE3

of Ws
AE3

. It is

isomorphic to the group Dvs
AE3

defined for the vector-spinor representation.

• The quotient group Ws
AE3

/Ds
AE3

is isomorphic to Z2 × S3. (Here S3 ≃ SL(2,Z2)

denotes the permutation group S3 of order 3!, which is the Weyl group of sl3.)

• There is a homomorphism between the Weyl group WAE3 and the quotient group

Ws
AE3

/Ds
AE3

WAE3 → Ws
AE3

/Ds
AE3

. (4.42)

Its kernel forms a normal subgroup of the Weyl group WAE3. This normal sub-

group is isomorphic to the principal congruence subgroup, defined by the kernel of the

canonical homomorphism

PSL(2,Z) → PSL(2,Z2). (4.43)

The proof of theorems 3 and 4 closely follows the one for the E10-case provided in

appendix C: the factorizability of the gravitino action Rvs
αi,εαi

into a Weyl reflection rαi

and a Dirac spinor action Rs
αi,εαi

allows one to consider proposition 4 as a corollary of

proposition 5 as before. The latter discusses the property of the group Ws
AE3

, whose

generators can be written in the form (4.14), (4.17):

Rs
α∗,εα∗

=
1√
2

(

1l + γ0γ
123
)

,

Rs
α1,εα1

=
1√
2

(

1l + γ12
)

,

Rs
α2,εα2

=
1√
2

(

1l + γ23
)

.

In this form, it is clear that Rs
α∗,εα∗

commutes with both Rs
α1,εα1

and Rs
α2,εα2

and hence

can be discussed separately from the other two. It is interesting to phrase this fact in

terms of Dynkin diagrams: for AE3, it is straightfoward to check that all elements in the

quotient group Ws
AE3

/Ds
AE3

fulfill the Coxeter relations corresponding to the disconnected

diagram displayed on page 42. This is, however, not the Dynkin diagram of AE3 (figure

2), but the one of the finite dimensional product group SL(2)×SL(3). Its associated Weyl

group is Z2 × S3 being isomorphic to the group of equivalence classes Ws
AE3

/Ds
AE3

. Note
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~~~

α2α1α∗

Figure 3. Disconnected diagram associated to the quotient group Ws

AE3
/Ds

AE3
.

that this statement is in sharp contrast to the E10-case of section 3.5, for which there is no

additional Coxeter relation for the quotient group. The associated Coxeter diagrams for

E10 and for the quotient group Ws
E10

/Ds
E10

are the same but nevertheless, the latter was of

finite cardinality. We have checked that the ‘disconnection’ (figure 3) that occurs for AE3

is non-generic in that the Dirac-spinor representations of the higher rank cases AEd lead to

generalized Coxeter relations rooted in the full corresponding connected Dynkin diagram.

The statement that the kernel of the homomorphism (4.42) is a congruence sub-

group (4.43) is related to the observation that the Weyl group of AE3 is isomorphic to

PGL(2,Z) [29]. We can make this precise within the context of the cosmological billiard

dynamics. Using the parameter u (4.34) for their description, the transformations rαi
of

u (4.35) provide a natural link between the generators of the Weyl group rαi
(for i = ∗, 1, 2)

and 2 × 2 matrices Ai :=
(

ai bi

ci di

)

with integer coefficients ai, bi, ci, di and determinant ±1

tantamount to

rαi
(u) =

aiu+ bi
ciu+ di

. (4.44)

The three matrices A∗, A1, A2 generate the group PGL(2,Z) [13, 29].33 As a next step,

consider the two group homomorphisms34

det : PGL(2,Z) → Z2 and

C : PGL(2,Z) → PGL(2,Z2) = SL(2,Z2).

The kernel of det is the modular group PSL(2,Z) that hence is a normal subgroup of

PGL(2,Z). The same is true for the kernel of C. Furthermore, the intersection of two

normal subgroups again is a normal subgroup and it is non-trivial in this case: On the

one hand, we have rα∗ ∈ Ker(C) and rα∗ /∈ Ker(det), whereas on the other hand rα∗rα1 /∈
Ker(C) and rα∗rα1 ∈ Ker(det) (4.35). Therefore, there is a homomorphism with kernel

Ker(C’) = Ker(C) ∩ Ker(det) of the form

C’ : PGL(2,Z) → Z2 × SL(2,Z2).

Due to the isomorphisms PGL(2,Z) ≃ WAE3 and SL(2,Z2) ≃ S3, the kernel of the homo-

morphism in (4.42) is isomorphic to Ker(C’) = Ker(C) ∩ PSL(2,Z). Due to the identity

SL(2,Z2) = PSL(2,Z2), it is furthermore isomorphic to the principal congruence subgroup,

defined by the kernel of the canonical homomorphism (4.43)

PSL(2,Z) → PSL(2,Z2).

33The Z2-factor in PGL(2, Z) = GL(2, Z)/Z2 corresponds to the subgroup (±1l2) that clearly corresponds

to the same fractional transformation (4.44) keeping in mind that the matrix product agrees with the

concatenation of two transformations (4.44).
34The canonical homomorphism C amounts to mapping any element

`

a b

c d

´

∈ PGL(2, Z) to the matrix of

Z/2Z-equivalence classes
`

[a] [b]
[c] [d]

´

∈ PGL(2, Z2).
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This completes the proof of theorem 4. �

We can also make this more precise in terms of 2× 2-matrices. A comparison of (4.35)

with (4.44) yields:

A∗ =

(

−1 0

0 1

)

, A1 =

(

−1 −1

0 1

)

, A2 =

(

0 1

1 0

)

.

It is an easy exercise to verify the Coxeter relations (4.36) in terms of these matrices.35

The additional Coxeter relation from proposition 5, saying that the matrix Rs
α∗

commutes

with Rs
α1

, corresponds to the fact that the images of the canonical homomorphism C(A∗)

and C(A1) commute in PSL(2,Z2):

C(A∗A1) =

(

[1] [1]

[0] [1]

)

∼ C(A1A∗) =

(

[1] [−1]

[0] [1]

)

.

It may also be interesting to investigate whether this pattern linking principal congruence

subgroups to the description of the billiard dynamics of a Dirac spinor in terms of the

finite group Ws
g

allows for a generalization to other Kac-Moody algebras g. A promis-

ing result in this respect was recently provided in [30], where the Weyl group of E10 was

shown to be related to the ‘modular group’ PSL(2, O) of octonionic integers O (octa-

vians).36 This might hint at a possibility of identifying the kernel of the homomorphism

WE10 → Ws
E10

/Ds
E10

(3.36) in proposition 2 with a suitably generalized principal congru-

ence subgroup involving the octavians.

5 Conclusions

We have studied the “fermionic billiards”, i.e. the chaotic dynamics of the gravitino, that

arise in the near-spacelike-singularity limit (or Belinski-Khalatnikov-Lifshitz, BKL limit)

of supergravity. We have focussed on eleven-dimensional supergravity (whose bosonic cos-

mological billiard takes place in the Weyl chamber of E10), and have also considered in

detail N = 1 D = 4 supergravity (whose bosonic billiard takes place in the Weyl chamber

of AE3 = A++
1 ). We have shown that a useful tool for studying the fermionic side of the

near-singularity cosmological billiards is the Kac-Moody coset reformulation of the super-

gravity dynamics. In this reformulation, the bosonic coset velocity P, and the gravitino

variable ψ, are both parallel-transported by the same abstract connection Q belonging to

the maximal compact subalgebra of the relevant Kac-Moody algebra, namely K(E10) for

maximal supergravity and K(AE3) for its D = 4 N = 1 truncation. The time evolution,

near a spacelike singularity, of the, say, K(E10)-valued ‘angular velocity’ Q(t) was shown

to consist of a succession of well-separated inverse-cosh ‘spikes’ associated to the collision

35Note that the relation (rα∗
rα2

)2 = 1 (4.36a) (i.e. that the two matrices A∗ and A2 commute in

PGL(2, Z)) follows from the equivalence relation 1l2 ∼ −1l2.
36Concerning the subtleties in defining a ‘group’ over the non-associative division algebra of octonions O,

we refer the reader to [30].
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on a ‘Toda wall’ (itself associated to a certain root α of E10). Each such K(E10)-spike

takes place along the ‘rotational axis’ Jα = Eα − E−α = Eα + ω(E−α) associated (within

K(E10)) to the corresponding wall root α.

We found that the integral over the collision of each ‘angular velocity’ Q(t) generates

a finite K(E10) rotation given by the universal formula

Rα,± = e±
π
2
Jα = e±

π
2
(Eα−E−α) (5.1)

where the normalization of Eα and E−α = −ω(Eα) (ω denoting the Chevalley involution) is

such that Eα, E−α and hα := [Eα, E−α] form a standardly normalized sl2-algebra (see ap-

pendix B). When evaluated within the ‘adjoint’ representation which acts on the coset ve-

locity P (and in the billiard limit where P ∈ h, the Cartan subalgebra of E10), the K(E10)-

rotation (5.1) reproduces the standard geometrical Weyl reflection rα, see eq. (2.14). The

effect of each collision on the fermionic variable ψ is obtained by evaluating the general

abstract K(E10) rotation (5.1) within the ‘vector-spinor’ representation of K(E10) to which

ψ belongs. As a consequence, the billiard dynamics of the gravitino can be described as a

‘word’, i.e. a product, of discrete vector-spinor K(E10) rotations, say (as in (3.8))

wvs = Rvs
αiN

,εαiN

· · · Rvs
αi2

,εαi2
Rvs

αi1
,εαi1

(5.2)

where αi1 → αi2 → · · · → αiN denotes an unbounded sequence of collisions encountered by

the billiard particle moving in the Weyl chamber of E10. Here, (αi1 , . . . , αiN ) is a sequence

of simple roots (the signs εαi
= ± associated to each simple root are fixed in the BKL-limit

and could here be all conventionally replaced by +). The vector-spinor word wvs (5.2) is

the fermionic side of the corresponding bosonic billiard result, described by a word in the

Weyl group, say

w = rαiN
· · · rαi2

rαi1
. (5.3)

We found that the ‘vector-spinor reflections’ (5.2) happen to factorize as the tensor product

of the usual vector Weyl reflections (5.3) and of a corresponding K(E10) ‘Dirac-spinor’

reflection as in (3.20), induced by the same sequence of collisions αi1 → αi2 → · · · → αiN :

ws = Rs
αiN

,εαiN

· · · Rs
αi2

,εαi2
Rs

αi1
,εαi1

. (5.4)

We considered (5.2) and (5.4) as particular representations of an abstract ‘spin’ extension

Wspin of the Weyl group of E10 (or more generally of any Kac-Moody algebra), formally

defined as the discrete subgroup of a suitable covering of the ‘group’ K(E10), which is

multiplicatively generated by the formal exponentials (5.1). We found that the generators

of the two representations (5.2) and (5.4) of Wspin satisfy generalized Coxeter relations

(see propositions 1 and 2 in section 3.5). We also found that its realization Wvs in the

vector-spinor representation is infinite and contains a quotient group Wvs/Dvs (where Dvs

is a normal subgroup of finite cardinality) that is isomorphic to the usual Weyl group W.

Therefore, we can think of Wvs as a finite-index extension of W. By contrast, we found

that the Dirac-spinor realization Ws of Wspin is of finite cardinality. Physically, this means
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that a Dirac-billiard, described by the action of the words (5.4) on some initial 32-valued

Dirac-spinor variable ǫ0, has only a finite orbit in R
32 (though, due to the chaotic nature

of the underlying Weyl-chamber billiard, the sequence of Dirac variables ǫ1, ǫ2, . . . , ǫn, . . .

will run chaotically over the finite orbit Wsǫ0).

Although our results have relied on the use of the only currently known spinorial

representations of K(E10) (which are both finite-dimensional and unfaithful), we think that

these results could be more general, and will, in particular, apply to the representations

of Wspin
G (where G is a ‘Kac-Moody group’) that are defined as the tensor product of a

representation of the Weyl group WG and a ‘pure spin 1
2 ’ representation of K(G) (where

each K(G) rotation generator has eigenvalue ±1
2).

As a particular example of another Kac-Moody algebra of interest for physics we con-

sidered AE3, whose Weyl group describes the billiard of pure supergravity in D = 4 dimen-

sions. We explicitly studied the fermionic billiard that arises in N = 1 D = 4 supergravity.

It is a simpler version of the E10 case, though it retains the main features mentioned above:

e.g. factorizability, existence of generalized Coxeter relations, finite cardinality of Ws
AE3

.

A special feature of the AE3 case is, however, that Ws
AE3

can be decomposed into two

commuting quotient groups, because the rotation generator Js
α∗

∈ K(AE3) (associated to

the dominant gravitational wall) happens to commute with the two other simple generators

Js
α1

and Js
α2

. This situation is non-generic in that it does not occur for the AEd case (which

is associated to pure gravity in D = d+ 1 dimensions).

Finally, we found that the ‘super-billiard’ obtained by combining the bosonic and

fermionic billiards exhibits (for E10 as well as for AE3) a striking analogy with the dynamics

of a ‘polarized photon’ bouncing on the Lorentzian mirrors corresponding to the Weyl

chamber of E10 (or AE3). It has a ‘momentum’ va (given by the Cartan-space velocity va =

β̇a), a ‘polarization vector’ ϕa (linked to the vector-index of the gravitino, after a suitable

redefinition (3.9) or (4.12)), two on-shell constraints (‘masslessness’,
∑

a,bGabv
avb = 0,

and ‘transversality,
∑

a,bGabv
aϕb = 0, where Gab is the flat Lorentzioan metric in Cartan

space), and a Maxwell-like gauge invariance (ϕ′a = ϕa + ξva). This analogy exhibits

some intriguing metamorphoses of gauge symmetries (local supersymmetry ↔ Maxwell-

like gauge symmetry), as well as of group symmetries (SO(d) ↔ SO(d − 1, 1)). It may

hint at new ways of using the conjectural gravity-coset correspondence for illuminating the

hidden symmetries of maximal supergravity.
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A D = 11 supergravity

Following the conventions in [7], we use a real representation of the Clifford algebra

{ΓA,ΓB} = ηAB (A.1)
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with η = diag(−+· · ·+) and A,B = 0, . . . , 10. The Lagrangian of D = 11 supergravity [20]

in the vielbein frame (2.3) reads modulo higher fermionic terms using Einstein’s summation

convention37

e−1L =
1

4
R11 −

i

2
ψ̄

(11)
A ΓABC∇Bψ

(11)
C − 1

48
FABCDF

ABCD

− i

96

(

ψ̄
(11)
E ΓABCDEFψ

(11)
F + 12ψ̄A

(11)Γ
BCψD

(11)

)

FABCD

+
2e−1

124
εABCDEFGHIJKFABCDFEFGHAIJK . (A.2)

Here e denotes the determinant of the vielbein eAM in 11 dimensions and A,B are ‘flat’

frame indices. We reserve M,N, . . . for D = 11 coordinate indices. The field strength is

FABCD = 4∇[AABCD] with the Levi-Civita connection ∇. The supersymmetry variations

are with ΓM := eAMΓA

δǫeM
A = iǭΓAψ

(11)
M (A.3a)

δǫψ
(11)
M = ∇M ǫ+

1

144

(

ΓM
NPQR − 8δN

MΓPQR
)

ǫFNPQR (A.3b)

δǫAMNP = −3

2
iǭΓ[MNψ

(11)
P ] . (A.3c)

The equations of motion following from the Lagrangian (A.2) are as in [7] to lowest order

in fermions:

RAB =
1

3
FACDEFB

CDE − 1

36
ηABFCDEFF

CDEF (A.4a)

∇AF
ABCD =

1

576
εBCDE1...E4F1...F4FE1...E4FF1...F4 (A.4b)

ΓB∇(11)
[A ψB] = − 1

144
ΓB
(

Γ[A
CDEF − 8δC

[AΓDEF
)

ψ
(11)
B] FCDEF (A.4c)

We also use the decomposition of the spin connection ωABC = ωA[BC] in terms of the

anholonomy coefficients ΩABC = Ω[AB]C that reads

ωABC =
1

2
(ΩABC + ΩCAB − ΩBCA) (A.5)

with ΩABC := 2EM
A EN

B ∂[MEN ]C .

B General (non-simply laced) case for the one wall limit

Let us indicate what are the modifications to bring to the reasonings of section 2.4 in

the case of a non-simply laced algebra where the various real roots that one might have to

consider do not all have the same norm. First, note that, in the context of the gravity-coset

correspondence, the Cartan subalgebra is naturally endowed with the symmetric bilinear

37Note that in most of the text of the paper, we suppress the use of Einstein’s summation convention to

avoid ambiguities.
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form Gab associated to eq. (2.5). The metric Gab (together with its inverse Gab) then

defines the norm of any root: (α|α) :=
∑

abG
abαaαb. Gab also provides one with the

general definition of the co-root α̌ ≡ hα ∈ h that is associated to a general (non-null) root

α ∈ h∗, namely (generalizing the simple root case (2.22)):

α̌a :=
2

(α|α)
α#a (B.1)

where α#a :=
∑

bG
abαb. The definition, and in particular the normalization (with the

factor 2/(α|α)) of hα ≡ α̌aHa ∈ h (where Ha is the β-coordinate basis in h; Gab = (Ha|Hb))

is such that

α(hα) = α(α̌) = 2. (B.2)

Kac [21] has shown that the symmetric bilinear form (·|·) defined on h (and h∗) admits a

unique extension to the full Kac-Moody algebra g when requiring its invariance (([x, y]|z) =

(x|[y, z]) for any x, y, z ∈ g). In particular, he has shown that two generators Eα (with

associated root α > 0) and E−α (with associated opposite root −α < 0) satisfy [Eα, E−α] =

(Eα|E−α)α#. In view of this result, it is convenient to normalize the generator Eα (and

its Chevalley associated E−α = −ω(Eα)) such that

(Eα|E−α) :=
2

(α|α)
=: σα. (B.3)

Indeed, with this normalization the three generators Eα, E−α and hα ≡ α̌ ∈ h satisfy

hα = [Eα, E−α] (B.4)

together with

[hα, E±α] = ±α(hα)E±α
(B.2)
= ±2E±α. (B.5)

In other words, the normalization (B.3) ensures that the three generators Eα, E−α, hα

satisfy the commutation relations of a standardly normalized sl2 algebra. [When (α|α) = 2,

eq. (B.3) reduces to (Eα|E−α) = 1 which is the normalization we had used in section 2.4.]

Let us now see how the use of the normalization (B.3) changes, when (α|α) 6= 2, i.e.

σα 6= 1, the calculations done in section 2.4. The first formulæ of section 2.4 that are

affected by the generalization allowing for σα 6= 1, are the Lagrangian L|α (2.30) and the

conjugate momentum Πα (2.31), which now read:

L|α =
1

2

10
∑

a,b=1

Gabβ̇
aβ̇b +

σα

4
e2α(β)ν̇2

α (B.6)

Πα =
σα

2
e2α(β)ν̇α (B.7)

Then, when decomposing the motion of β in parallel and orthogonal pieces, we also need to

remember that the kinetic energy of the orthogonal part is no longer 1
4α(β̇)2, but α(β̇)2

2(α|α) =
σα

4 α(β̇)2. The conservation of orthogonal energy (2.33) gets modified into

E|| =
σα

4
α(β̇)2 +

1

σα
e−2α(β)Π2

α.
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Then, the solution (2.34) takes the form

eα(β) =
|Πα|
√

σαE||

cosh(c0(t− tc))

with c20 =
4E||

σα
,

and the angular velocity θ̇ (2.37) reads

θ̇ =
Πα

σα
e−α(β)

while its integral becomes

θ(t) = εα arctan
(

ec0(t−tc)
)

+ θ−∞

with the sign εα := Πα

|Πα|
∈ {±1} as before. As we see, the final result is not affected by

this generalization: the kink in θ(t) is ±π
2 independently of the initial data (apart from

the sign of Πα), and of the norm of α. The crucial point is that the ‘rotation generator’

Jα = Eα − E−α entering the final result (2.44) is normalized in the standard sl2 way, see

eqs. (B.4), (B.5). This is, e.g., what we had used in the explicit SL(2,R) calculation (2.46).

C Proof of the propositions of section 3.5

The factorizability of the vector-spinor action Rvs
α,εα

into the tensor product of a Weyl

reflection rα (2.14) and a Dirac spinor action (3.17) will allow us in fact to consider propo-

sition 1 as a corollary of proposition 2. The proof of the latter will be divided into several

parts. We start with proving the generalized Coxeter relations:

Lemma 1

The matrices Rs
αi

∈ R
32×32 (3.12), (3.33), associated to the dominant walls αi with i =

0, . . . , 9 (2.10), fulfill the following generalized Coxeter relations:
(

Rs
αi

)4
= −1l (C.1)

If two nodes αi, αj in figure 1 are not linked, the associated matrices commute, otherwise

these fulfill
(

Rs
αi
Rs

αj

)3
= −1l. (C.2)

The ten elements Rs
αi

generate a group Ws. Note that this implies in particular that the

generators Rs
αi,εαi

(3.12), (3.18) would have generated the same group for all choices of

signs εαi
.

Proof. We start with the observation that the matrices Γαi = 2Js
αi

(3.14) with i = 0, . . . , 9

square to the negative identity matrix. This entails the relation (C.1) after an evaluation

of a matrix exponential series (equivalent to eiπ = −1) with the unit matrix 1l:

(

Rs
αi

)4 (3.18)
= eπΓαi

= −1l
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It also allows us to rewrite the group elements in a different manner:

Rs
αi

=
1√
2

(

1l + Γαi
)

. (C.3)

Given any two nodes αi, αj in figure 1 on page 7 that are not linked, the identification of

Γαi with Γ-matrices (3.14) then immediately implies that the corresponding group elements

commute, taking into account the Clifford algebra relation {Γa,Γb} = 2δab. For the case

of linked nodes αi, αj , the product k of the anticommuting matrices i := Γαi and j := Γαj

is a square root of −1l again. k := ij also anticommutes with i and j. The elements i, j,k

generate a multiplicative group with 8 elements (namely {±1,±i,±j,±k}). This allows for

an easy evaluation of the product of the matrices Rs
αi

(C.3):

Rs
αi
Rs

αj
=

1

2

(

1l + i + j + k
)

=
1

2

(

1l +
√

3I
)

(C.4)

with mi + nj + pk =:
√

m2 + n2 + p2I for m,n, p ∈ R,

which is a standard formula for anticommuting quaternions i, j,k with I2 = −1l. Since (C.4)

is a third root of −1l, the relation (C.2) follows.

Another consequence of the relation (C.1) is that any matrix Rs
αi

is an eighth root of

unity. This in particular implies that its inverse also is contained in the set of words Ws

generated by arbitrary products of the matrices Rs
αi

. Thus, Ws is endowed with a group

structure. Since the inverse of Rs
αi,εαi

(3.18) is Rs
αi,−εαi

, the group Ws is not sensitive to

the choices of εαi
∈ {±1}. �

Lemma 2

The group Ws generated by the ten matrices Rs
αi

(3.12), (3.33) is a finite subgroup of

SO(32).

Proof. First, we recall from [7] that the algebra generators Js
αi

(3.12) are particular cases of

K(E10)-generators acting unfaithfully on a 32 dimensional space endowed with an invariant

norm Qs which reads for any ǫ ∈ R
32:

Qs(ǫ1, ǫ2) = ǫT1 ǫ2 =
32
∑

A=1

ǫAǫA. (C.5)

This implies Js
αi

∈ so32 and for the group generators Rs
αi

= e
π
2
Js

αi (3.33) Rs
αi

∈ SO(32).

Hence, the group Ws is a subgroup of SO(32). We will show next that Ws is finite.

Squaring the equation (C.3) results for any i ∈ {0, . . . , 9} in the identity

(

Rs
αi

)2
= Γαi

= Rs
αi,εαi

√
2 − 1l. (C.6)

We have already shown in lemma 1 that two rotations Rs
αi

commute, if the associated

nodes in the Dynkin diagram of E10 in figure 1 on page 7 are not connected with a line.
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For all the remaining cases, it is a straightforward calculation with Γ-matrices to verify the

following anticommutation relation:
{

Rs
αi
,Rs

αj

}

= Rs
αi

√
2 + Rs

αj

√
2 − 1l. (C.7)

Hence, any matrix product of generators Rs
αi

can be written as a sum of ordered matrix

products, for which there only are a finite number of possibilities due to the relation (C.6).

Furthermore, the coefficients of the ordered matrix products are contained in the Galois

extension Z[
√

2] of integers. In other words, the group action in Ws stabilizes on a Z[
√

2]-

lattice, spanned by the ordered products of generators Rs
αi

. In formulæ, this means that any

word g ∈ Ws constructed from these generators can be associated to constants c∗ ∈ Z[
√

2]

such that

g = c01l +

9
∑

i=0

ciRs
αi

+
∑

i1<i2

ci1i2Rs
αi1

Rs
αi2

+ . . .

+
∑

i1<···<i10

ci1...i10Rs
αi1

· · · Rs
αi10

. (C.8)

In order to prove the finiteness of Ws, it is hence sufficient to show that the constants

c∗ ∈ Z[
√

2] may only take a finite number of values. As a next step, we substitute the

Γ-matrices for Rs
αi

(3.14), (C.3) in this expansion. This implies that a general element

g ∈ Ws has the form

g =
1

32

(

d01l +
10
∑

a=1

daΓa +
∑

a1<a2

da1a2Γa1a2 + · · · +
∑

a1<···<a10

da1...a10Γa1...a10

)

.

The important observation is that there is a maximal denominator which is 32 =
√

2
10

and that the coefficients d∗ ∈ Z[
√

2] are still Galois extended integers. Since the group

Ws is a subgroup of the special orthogonal group SO(32) (C.5), any g ∈ Ws has to fulfill

the orthogonality constraint gT g = 1l. Taking the trace of this constraint (i.e. considering

the part ∝ 1l in the expansion of gT g along the ordered Γ-basis) leads us to the following

diophantine equation:

32 = d2
0 +

10
∑

a=1

d2
a +

∑

a1<a2

d2
a1a2

+ · · · +
∑

a1<···<a10

d2
a1...a10

(C.9)

Now, the substitution d∗ =: d′∗ + d′′∗
√

2 of the Galois extended integers d∗ ∈ Z[
√

2] for

ordinary integers d′∗, d
′′
∗ ∈ Z produces two equations from (C.9):

32 = d′0
2 + 2d′′0

2 +

10
∑

a=1

(

d′a
2 + 2d′′a

2
)

+ · · · +
∑

a1<···<a10

(

d′2a1...a10 + 2d′′2a1...a10

)

(C.10)

0 = d′0d
′′
0 +

10
∑

a=1

d′ad
′′
a + · · · +

∑

a1<···<a10

d′a1...a10
d′′a1...a10

Since all terms on the r.h.s. of (C.10) are positive and the coefficients d′∗, d
′′
∗ are integer,

the number of solutions of the equation (C.10) is finite. As the collective of integers d′∗, d
′′
∗

parametrize a general word g ∈ Ws, this proves that Ws is of finite cardinality. �
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Lemma 3

The squares of the generating elements Rs
αi

(3.12), (3.33) of the group Ws for i = 0, . . . , 9

form a normal subgroup Ds of Ws:

Ds :=
〈〈(

Rs
αi

)2∣
∣i = 0, . . . , 9

〉〉

(C.11)

∀g ∈ Ws, ∀h ∈ Ds g · h · g−1 ∈ Ds (C.12)

The subgroup Ds is not abelian and its cardinality is 2048.

Proof. Since the ten generating elements (Rs
αi

)2 (3.12), (3.33) for i = 0, . . . , 9 are fourth

roots of unity (C.1), their free product indeed forms a subgroup Ds of Ws. Furthermore, the

relations (3.12) and (C.6) in fact imply that the group Ds (C.11) is generated by products

of the following Clifford matrices:

HDS =
〈〈

Γ1 2,Γ2 3, . . . ,Γ9 10,Γ1 2 3
〉〉

.

A short computation proves that the generating Clifford matrices Γa for a = 1, . . . , 10 are

contained in Ds and hence, we have

Ds = {±1l,±Γa,±Γa1a2 , . . . ,±Γa1...a10 |ai ∈ {1, . . . , 10}} . (C.13)

Therefore, the cardinality of Ds is 210+1 = 2048 and it obviously is not abelian. To prove

that Ds is a normal subgroup, it is sufficient to show that the relation (C.12) is fulfilled for

the generators Rs
αi

∈ Ws (C.3) (with i = 0, . . . , 9) and the generators h ∈ {±1l,±Γa} (for

a = 1, . . . , 10)

Rs
αi

· h ·
(

Rs
αi

)−1 ∈ Ds,

which can be easily checked by a direct computation. �

Lemma 4

There is a homomorphism Φ between the Weyl group W of E10 and the quotient group

Ws/Ds:

Φ : W → Ws/Ds (C.14)

Proof. As shown in lemma 3, Ds is a normal subgroup of Ws. Hence, the coset Ws/Ds

in (C.14) is well-defined. Next, we define the mapping Φ (C.14) by linking the fundamental

reflections rαi
∈ W to the Ds-equivalence classes [Rs

αi
] of generating elements of Ws:

Φ : W → Ws/Ds (C.15)

rαi
7→ [Rs

αi
] =: r̄αi

The mapping Φ can then be extended to the entire Weyl group W by the usual relation

for any two fundamental reflections rαi
, rαj

∈ W with i, j ∈ {0, . . . , 9}

Φ(rαi
rαj

) := Φ(rαi
)Φ(rαj

).
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To complete the proof that Φ (C.15) defines a homomorphism, one has to check that the

identity 1 ∈ W can be mapped to the Ds-equivalence class [1l] of the identity in Ws in

a consistent way. This is equivalent to checking that the Coxeter relations that the Weyl

group W is subject to and that are encoded in the Dynkin diagram of E10 (figure 1 on

page 7), are preserved by the mapping Φ:

r̄2αi

!
= [1l], (C.16a)

(

r̄αi
r̄αj

)3
!
= [1l] for adjacent nodes αi, αj and (C.16b)

(

r̄αi
r̄αj

)2
!
= [1l] for non-adjacent nodes αi, αj . (C.16c)

The first equation is an immediate consequence of the definition of the normal subgroup Ds,

the second one follows from the relations (C.2), (C.13) and the third one can be deduced

from the first one (C.16a) taking into account that the matrices r̄αi
and r̄αj

commute for

the case of non-adjacent nodes as shown in lemma 1. �

The proof of theorem 2 is then completed by combining the four lemmas: Since the

group Ws is finite (lemma 2), the cardinality of the quotient group Ws/Ds also is finite.

Combining this observation with the infinite cardinality of the Weyl group W of E10, any

homomorphism Φ (C.14, lemma 4) must have a non-trivial kernel, corresponding to a

normal subgroup of the Weyl group W of E10. �

As mentioned above, the proof of proposition 1 follows from a combination of propo-

sition 2 and the factorization of the vector-spinor action Rvs
α into the tensor product of

a Weyl reflection rα (2.14) (acting on the vector part of the gravitino ϕa) and a Dirac

spinor action Rs
αi

(acting on its spinor part) as exhibited in eq. (3.17). In formulæ, for all

dominant walls αi (2.10) with rαi
∈ W and Rs

αi
∈ Ws we have

Rvs
αi

= rαi
⊗Rs

αi
. (C.17)

The group structure of Wvs is then inherited from the group structure of the Weyl group

W and of the Dirac-spinor group Ws. Since the fundamental reflections rαi
of the Weyl

group W are subject to the Coxeter relation r2αi
= 1, the squares of the generators of Wvs

have the form

(Rvs
αi,εαi

)2 = 1 ⊗ (Rs
αi,εαi

)2.

This immediately implies that these matrices generate a normal subgroup Dvs of Wvs that

is isomorphic to Ds and hence shares all its properties. The generalized Coxeter relations

stated in proposition 1 then also directly follow from the tensor product structure (keeping

in mind lemma 1 and the standard Coxeter relations for the Weyl group W of E10 (C.16)).

Furthermore, a homomorphism Φ linking the Weyl group W of E10 to the quotient group

Wvs/Dvs can be constructed in a similar way as in (C.15). Hence, we are left with proving

that the homomorphism Φ linking the Weyl group W of E10 to the quotient group Wvs/Dvs

is an isomorphism (3.36):

Φ : W → Wvs/Dvs.
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The tensor product structure of Rvs
αi

= rαi
⊗Rs

αi,εαi
(C.17) together with the isomorphism

of the quotient groups Dvs ≃ Ds and the Dirac-spinor mapping (C.15) implies that a general

word w (with w = rα1rα2 · · · rαn) in the Weyl group W is mapped by Φ to:

Φ : W → Wvs/Dvs

w 7→ w ⊗ r̄ (C.18)

The issue is now to know whether one can uniquely reconstruct the pre-image w ∈ W,

when one is given some equivalence class of matrices in the tensor product Wvs. Clearly

given a matrix Ra
b
A

B (3.17), it determines the factor wa
b it comes from modulo a (real)

factor, say λwa
b. But we also know that w ∈ W is an orthochronous Lorentz transformation

which preserves the Lorentzian norm Gabβ̇
aβ̇b. This implies that there is a unique w within

a “line” λw. [Even λ = −1 is impossible, because W preserves the future light cone in

β-space.] This completes the proof of the propositions of section 3.5. �
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